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Abstract

Eigenvalue problems are critical to several fields of science and engineering. We
present a novel unsupervised neural network for discovering eigenfunctions and
eigenvalues for differential eigenvalue problems with solutions that identically
satisfy the boundary conditions. A scanning mechanism is embedded allowing
the method to find an arbitrary number of solutions. The network optimization is
data-free and depends solely on the predictions. The unsupervised method is used
to solve the quantum infinite well and quantum oscillator eigenvalue problems.

1 Introduction

Differential equations are prevalent in every field of science and engineering, ranging from physics to
economics. Thus, extensive research has been done on developing numerical methods for solving
differential equations. With the unprecedented availability of computational power, neural networks
hold promise in redefining how computational problems are solved. Among other applications,
unsupervised neural networks are capable of efficiently solving differential equations [1, 3, 6, 7, 8].
These are unsupervised, data-free methods where the optimization depends solely on the network
predictions. The neural network solvers pose several advantages over numerical integrators: the
obtained solutions are analytical and differentiable [6], networks are more robust to the ‘curse of
dimensionality’ [3], numerical errors are not accumulated [8], and a family of solutions corresponding
to different initial or boundary conditions can be constructed [2].

Differential eigenvalue equations with boundary conditions appear in a wide range of problems,
including quantum mechanics and applied mathematics. Efficient numerical iterative methods, such
as finite difference method, have been developed for solving eigenvalue problems, but they share the
drawbacks common to all numerical integrators. Lagaris et al. [5] have shown that neural networks are
able to solve eigenvalue problems and proposed a partially iterative method that solves a differential
equation with a fixed eigenvalue at each iteration. Our contribution includes a novel unsupervised
neural network architecture that simultaneously learns eigenvalues and the associated eigenfunctions
using a scanning mechanism. The proposed technique is an extension to neural network differential
equation solvers and, consequently, acquires all the benefits that network solvers have over numerical
integrators. Moreover, our method has an additional advantage over integrators in that it discovers
solutions that identically satisfy the boundary conditions. We assess the performance of the proposed
architecture by solving two standard eigenvalue problems of quantum mechanics, namely, the infinite
well, and the quantum harmonic oscillator.
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2 Methodology

We consider an eigenvalue problem that exhibits the form:

Lf(x) = λf(x), (1)

where x is the spatial variable, L is a differential operator which depends on x and its derivatives,
f(x) is the eigenfunction, and λ is the associated eigenvalue. We assume homogeneous Dirichlet
boundary conditions at xL and xR such that f(xL) = f(xR) = fb, where fb is a constant boundary
value. For a given and fixed eigenvalue, Eq. (1) is an equation that can be solved by neural network
methods suggested in [1, 5, 6]. We introduce a new architecture shown in Fig. 1, which is capable of
solving Eq. (1) when both f(x) and λ are unknown. The network takes two inputs, x and 1. The
constant input feeds a single linear neuron (affine transformation) that is updated through optimization,
allowing the network to find constant λ. The x and λ feed a feed-forward fully-connected network
that returns an output function N(x, λ). The predicted eigenfunctions f(x, λ) is defined by using a
parametric trick, similar to Ref. [8], according to the equation:

f(x, λ) = fb + g(x)N(x, λ), (2)

where we employ the parametric function

g(x) =
(
1− e−(x−xL)

)(
1− e−(x−xR)

)
, (3)

which embeds the boundary conditions in the f(x, λ).

Figure 1: Adopted eigenvalue problem architecture.

Our aim is to discover pairs of f(x, λ) and λ that satisfy Eq. (1). This is achieved by minimizing,
during the optimization, a loss function L defined by Eq. (1) as:

L = LDE + Lreg

=
〈(
Lf(x, λ)− λf(x, λ)

)2〉
x
+ Lreg, (4)

where 〈·〉x represents averaging with respect to x. Any derivative with respect to x contained in L is
calculated by using the auto-differentiation technique [9]. The Lreg in Eq. (4) contains regularization
loss functions and is defined as: Lreg = νfLf + νλLλ + νdriveLdrive. Empirically, for the problems
discussed below, we found the optimal set νf = νλ = νdrive = 1. The Lf and Lλ are used to avoid
learning trivial eigenfunctions and eigenvalues respectively, while Ldrive motivates the network to
scan for higher eigenvalues, as we explain below. The regularization functions are defined as:

Lf =
1

f(x, λ)2
, Lλ =

1

λ2
, Ldrive = e−λ+c. (5)

During the optimization, a scheduled scanning algorithm increases the Ldrive by increasing c in regular
intervals. That forces the network to search for larger eigenvalues and the associated eigenfunctions.
At each interval the network is optimized and the model parameters are stored when sufficiently
low LDE is achieved. We emphasize that the loss function solely depends on the predictions of the
network and, therefore, the training process is data-free, resulting in an unsupervised learning method.
For the training, a batch of x points in the interval [xL, xR] is selected as input. In every training
iteration (epoch) the input points are perturbed by a Gaussian noise [8]. Adam optimizer is used [4]
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with a learning rate of 8 · 10−3. We use two hidden layers of 50 neurons per layer with trigonometric
sin(·) activation function. The use of sin(·) instead of more common activation functions, such as
Sigmoid(·) and tanh(·), significantly accelerates the network’s convergence to a solution [8]. We
implemented the proposed neural network in pytorch [9] and published the code on github 1.

3 Experiments

We evaluate the effectiveness of the proposed method by solving the eigenvalue problem defined
by Schrodinger’s equation. This is a fundamental equation in quantum mechanics that describes
the state wavefunction ψ(x) and energy E of a quantum system. We are interested in solving the
one-dimensional stationary Schrodinger equation defined as:[

− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x), (6)

where ~ and m stand for Planck constant and mass which, without loss of generality, can be set to
~ = m = 1. Equation (6) defines an eigenvalue problem where ψ(x) and E denote the eigenfunction
f(x, λ) and eigenvalue λ pair. A boundary value eigenvalue problem is defined by considering a
potential function V (x) and boundary conditions of ψ(x). We assess the performance of the proposed
network architecture by solving Eq. (6) for the potential functions of the infinite square well and the
harmonic oscillator, both of which have known analytical solutions.

3.1 Infinite Square Well

The infinite square well problem is characterized by the following potential function:

V (x) =

{
0 0 ≤ x ≤ `
∞ otherwise

, (7)

where the length of the well is set to ` = 1. The exact eigenfunctions and eigenvalues read

ψn(x) =

{√
2 sin(nπx) 0 ≤ x ≤ 1

0 otherwise
, En =

n2π2

2
, (8)

where n is a positive integer and indicates different solutions. The eigenfunctions are strictly zero
outside of the well, implying the boundary conditions ψ(0) = ψ(1) = 0. The Eqs. (2) and (3) ensure
the boundary conditions by setting xL = 0, xR = 1, and fb = 0. The proposed scanning model is
capable of solving for an arbitrary number of the first n states. In Fig. 2 we show results up to n = 3.
The left panel presents the loss functions of Eqs. (4) and (5) (upper), and the predicted E (lower)
during the network optimization. The scanning algorithm pushes the predicted eigenvalue upwards.
The loss falls precipitously when an eigenfunction is found, and the energy shows plateaus at these
exact eigenvalues (indicated by dashed black line) of Eq. (8). The loss function in Fig. 2 depicts three
dips, which correspond to three plateaus in the energy. This behavior gives a physical meaning to the
loss function, since by inspecting L during the training we can draw the eigenstates. The right panel
shows the extracted ψ(x) (blue) and E (dashed black) at each plateau. Comparing with the exact
solutions of Eq. (8), the order of magnitude of errors are 10−3 and 10−4 for ψn and En, respectively.

3.2 Quantum Harmonic Oscillator

The harmonic oscillator is characterized by the quadratic potential function

V (x) =
1

2
kx2, (9)

where k is the force constant and is considered to be k = 4. The exact solutions for the eigenfunctions
and energies are given in terms of Hermite polynomials Hn as

ψn(x) =
1√
2nn!

e−
x2

2

π1/4
Hn (x) , En = n+

1

2
. (10)

1https://github.com/henry1jin/eigeNN
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Figure 2: Infinite square well: Left panel shows the loss functions and the predicted energy during the
training; dashed lines indicate the exact energy levels. Right plot outlines the predicted eigenfunctions
(blue) and eigenvalues (dashed black). The errors are of the order 10−3 and 10−4 for ψ and E.

The boundary conditions for the quantum oscillator problem dictate the wavefunction to vanish at
infinity, that is, ψ(−∞) = ψ(∞) = 0. In numerical methods, infinity is assumed to be a large
number compared to the potential dimensions. We adopt the same approach and consider the boundary
conditions ψ(−6) = ψ(6) = 0. Thus, Eqs. (2) and (3) ensure the boundary conditions by setting
xL = −6, xR = 6, and fb = 0.

Figure 3: Quantum harmonic oscillator: Top left shows the various loss terms. Bottom left plots the
history of the predicted energy. Right plot shows the eigenfunctions found by the model; the red
dotted line outlines the potential. The order of magnitude of errors are 10−2 for ψ and 10−2 for E.

The proposed scanning neural network method is employed to discover the first three eigenstates for
the quantum harmonic oscillator. The left panel in Fig. 3 shows the drops in the total loss (blue line)
that correspond to plateaus in the eigenvalue during training (green), indicating that an eigenvalue
has been found. The predicted ψn(x) and En are presented in the right panel in Fig. 3 by solid blue
and dashed black lines, respectively, while the red dotted curve outlines the potential energy.

4 Conclusion

In recent years, there has been a growing interest in the application of neural networks to study
differential equations. In this work, we introduced a neural network that is capable of discovering
eigenvalues and eigenfunctions for boundary conditioned differential eigenvalue problems. The
obtained solutions identically satisfy the given boundary conditions. A scanning mechanism allows
the network to find an arbitrary number of eigenvalues and associated eigenfunctions. Inspecting
the loss function during training allows one to draw the eigenstates, providing a physical meaning
to the loss function. The optimization solely depends on the network’s predictions, consisting of
an unsupervised learning method. We demonstrated the capability of the proposed architecture by
solving the infinite well and harmonic oscillator quantum problems.
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This work presents a parametrization that allows the network to discover solutions that identically
satisfy the homogeneous Dirichlet boundary conditions. Using alternative parametric forms yields
network predictions that ensure other type of constraints such as non-homogeneous Dirichlet, Neu-
mann, and mixed boundary conditions. The embedded scanning mechanism is characterized by a set
of hyperparameters that determine the robustness of the network in discovering different eigenvalues-
eigenfunctions pairs. In the future, we will extend the scanning method to adjust the hyperparameters
with respect to the problem. This optimization will make the training more efficient and will make
the network more robust in the discovery of eigenvalues and eigenfunctions.

Broader Impact

This work is valuable for computational physicists and applied mathematicians, as well as, in any field
where differential eigenvalue problems may arise. We have demonstrated our method’s success for
the one dimensional Schrodinger equation, but the technique can be generalised to Sturm-Liouville
problems, as well as higher dimensional equations (e.g. 3D Schrodinger and Helmholtz equations).
We strongly believe that this study will serve as the groundwork for future works in the area of solving
differential equations using deep learning methods. We neither foresee and nor desire our research
results to be used for any kind of discrimination.
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