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Abstract

Eigenvalue problems are critical to several fields of science and engineering. We
present a novel unsupervised neural network for discovering eigenfunctions and
eigenvalues for differential eigenvalue problems with solutions that identically sat-
isfy the boundary conditions. A scanning mechanism is embedded allowing the
method to find an arbitrary number of solutions. The network optimization is data-
free and depends solely on the predictions. The unsupervised method is used to
solve the quantum infinite well and quantum oscillator eigenvalue problems.

Introduction

• Neural networks solve differential equations with derivatives taken through
auto-differentiation [1, 2, 3, 4, 5].

• We designed unsupervised networks for solving eigenvalue problems of the
form

Lf (x) = λf (x) (1)

L is a differential operator, λ is the eigenvalue, and f (x) is the eigenfunction.

• We solve Schrodinger’s equation from quantum physics, where ψ(x) is the
eigenfunction, E the energy eigenvalue, and V (x) the potential
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ψ(x) = Eψ(x) (2)

Methodology

Fig. 1: Neural network architecture, parameterization of network output, and loss function

• The network takes in inputs x and a constant 1. The constant 1 is fed into a
single neuron, which learns solution eigenvalues.

• Impose homogeneous Dirichlet boundary conditions with parametrization

g(x) =
(
1− e−(x−xL)

)(
1− e−(x−xR)

)
(3)

• Physics-informed loss function is given by

L = LDE + Lreg

=
〈(
Lf (x, λ)− λf (x, λ)

)2〉
x
+ Lreg (4)

• Data-free training since the L solely depends on network predictions.

• The regularization loss terms are given by

Lf =
1

f (x, λ)2
, Lλ =

1

λ2
, Ldrive = e−λ+c. (5)

Fig. 2: The scanning mechanism pushing eigenvalue upwards. Red dot is eigenvalue, and blue curve is the shifting Ldrive

• We used Adam optimizer for training, two hidden layers, 50 neurons each. We also
used sin(·) instead of more common activation functions because we found that it
accelerates the convergence to a solution.

Experiments

We test our method on two cases of the Schrodinger equation Eq. (2).

Infinite square well: The potential function is given by

V (x) =

{
0 0 ≤ x ≤ `

∞ otherwise
. (6)

• The analytical solutions to this problem are

ψn(x) =

{√
2 sin(nπx) 0 ≤ x ≤ 1

0 otherwise
, En =

n2π2

2
, (7)

Fig. 3: Found solutions for the infinite square well. Errors are of the order 10−3 and 10−4 for ψ and E.

Quantum harmonic oscillator: The potential is given by

V (x) =
1

2
kx2, (8)

• The exact solutions for the eigenfunctions and energies are given in terms
of Hermite polynomials Hn

ψn(x) =
1√
2nn!
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x2

2

π1/4
Hn (x) , En = n +

1

2
. (9)

Fig. 4: Found solutions for the harmonic oscillator. Errors are of the order 10−2 and 10−2 for ψ and E.

Conclusion

• A general neural network method for discovering eigenvalues and eigen-
functions of boundary conditioned problems.

• The boundary conditions are identically satisfied through a parametrization.

• Different boundary conditions can be identically satisfied through a different
parametrization.

• An embedded scanning mechanism allows the network to find different
eigenvalues and eigenfunctions pairs.

• The network optimization solely depends on the predictions consisting an
unsupervised data-free learning method.

• A physics-informed loss function. Dips in loss and plateaus in eigenvalue
predictions indicate a solution, giving physical meaning to loss function.
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