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L , Quantum harmonic oscillator: The potential is given by
* The regularization loss terms are given by

V() = ke’ )

Eigenvalue problems are critical to several fields of science and engineering. We | | \

present a novel unsupervised neural network for discovering eigenfunctions and L= NVE Ly == Lgrive = € 7. (5)
eigenvalues for differential eigenvalue problems with solutions that identically sat- f@A) * The exact solutions for the eigenfunctions and energies are given in terms
isfy the boundary conditions. A scanning mechanism is embedded allowing the of Hermite polynomials Hp,

method to find an arbitrary number of solutions. The network optimization is data-

free and depends solely on the predictions. The unsupervised method is used to 10
solve the quantum infinite well and quantum oscillator eigenvalue problems. | Y
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Introduction
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* Neural networks solve differential equations with derivatives taken through

auto-differentiation [1, 2, 3, 4, 5]. 0.4 -
« We designed unsupervised networks for solving eigenvalue problems of the

0.2 1
form \
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L is a differential operator, X is the eigenvalue, and f(x) is the eigenfunction. Eigenvalue
« We solve Schrodinger’s equation from quantum thSiCS, where zp(x) IS the Fig. 2: The scanning mechanism pushing eigenvalue upwards. Red dot is eigenvalue, and blue curve is the shifting Lgive

eigenfunction, E the energy eigenvalue, and V' (x) the potential
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B2 92 ] « We used Adam optimizer for training, two hidden layers, 50 neurons each. We also Epochs (103) X

~5a,2 TV (@) vlz) = EY(z) (2) used sin(-) instead of more common activation functions because we found that it
_ . accelerates the convergence to a solution.

Fig. 4: Found solutions for the harmonic oscillator. Errors are of the order 10~2 and 1072 for ¢) and E.

Conclusion

* A general neural network method for discovering eigenvalues and eigen-

Methodology

We test our method on two cases of the Schrodinger equation Eq. (2).

Hidden Hidden Infinite square well: The potential function is given by functions of boundary conditioned problems.
Inputs Layer1 Layer?2 Output Parameterization 0 0< <y
Viz) = =L =t (6) * The boundary conditions are identically satisfied through a parametrization.
.\\// oo otherwise _ - , _ o ,
ﬁ‘"‘t - Different boundary conditions can be identically satisfied through a different
l/“‘%’i * The analytical solutions to this problem are parametrization.
A\
/V/, .\\ (ON(X,A)—] fp+N(XA) - g(x) —Ff(x,A) » An embedded scanning mechanism allows the network to find different
Vasin ) 5 9 eigenvalues and eigenfunctions pairs.
2smm(nmr) 0<z <1 nem
Tr) = - T Ep=—, 7 . iz ati it ot
[ = < (LF(x, \) — M(x, )\))2 > + L. ¥n(z) {O otherwise n 5 (7) The netwgrk optimization soI.er depends on the predictions consisting an
X ° unsupervised data-free learning method.
A physics-informed loss function. Dips in loss and plateaus in eigenvalue
Fig. 1: Neural network architecture, parameterization of network output, and loss function predictions indicate a solution, giving physical meaning to loss function.
» The network takes in inputs x and a constant 1. The constant 1 is fed into a e References
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* Physics-informed loss function is given by

» Data-free tralnmg since the L SOIer depends on network predlctlons. Fig. 3: Found solutions for the infinite square well. Errors are of the order 1072 and 10~ for ¢ and E.



