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Abstract

Mismodeling the uncertain, diffuse emission of Galactic origin can seriously
bias the characterization of astrophysical γ-ray data, particularly in the region of
the Inner Milky Way where such emission can make up & 80% of the photon
counts observed at∼GeV energies. We introduce a novel class of methods that use
Gaussian processes and variational inference to build flexible background and signal
models for γ-ray analyses with the goal of enabling a more robust interpretation
of the make-up of the γ-ray sky, particularly focusing on characterizing potential
signals of dark matter in the Galactic Center with data from the Fermi telescope.

1 Introduction

The nature of dark matter remains a major, persisting mystery in particle physics and cosmology today.
One of the primary avenues to search for dark matter is through astrophysical indirect detection—
looking for visible byproducts of dark matter annihilation or decay in dark matter-rich regions of the
sky (see Refs. [1, 2] for a review). Indeed such a putative signal was identified in the inner regions
of the Milky Way—the Galactic Center—over a decade ago using γ-ray data from the Fermi-LAT
space telescope [3]. The origin of this signal, known as the Galactic Center Excess (GCE), has been
hotly debated and remains contentious. The spatial and spectral properties of the signal were shown
early on to be compatible with expectation from annihilating dark matter [4, 5]. More recently, the
statistical properties of the signal were shown to prefer an explanation in terms of an unresolved
population of γ-ray point sources (PSs) rather than annihilating dark matter using the 1-point statistics
of photon counts [6] and a wavelet decompositions of the GCE signal [7]. The spatial morphology of
the signal was subsequently also shown to prefer an astrophysical explanation [8–10].

Robustly characterizing the GCE signal is however complicated by the fact that the Galactic Center
region contains significant background emission of diffuse Galactic origin sourced by cosmic rays
interacting with the gas, dust, and charged particle populations in the Milky Way. While this Galactic
background emission can be modeled using cosmic-ray propagation codes such as Galprop [11,
12] and Dragon [13], uncertainties in the properties of 3-D cosmic-ray transport, as well as the
underlying distribution of interstellar gas and dust mean that large uncertainties in our knowledge
these background components remain.

While the existence of the GCE has been shown to be generally robust to reasonable variation of the
modeled diffuse emission [5, 14–16], its statistical interpretation as originating from a population of
unresolved PSs can be be susceptible to mismodeling of the Galactic diffuse emission, to the extent
of potentially mischaracterizing a dark matter signal as arising from a population of PSs [6, 17].
Reliably characterizing the origin of the GCE therefore requires an improved understanding of the
Galactic diffuse contribution. Complementary to building better models of this emission are methods
that augment existing models by introducing extra spatial and/or spectral degree of freedom that aim
to account for uncertainties in our knowledge of diffuse emission of Galactic origin [18, 10, 19, 20].
In particular, Refs. [18, 10] used regularized likelihoods to build adaptive templates for the Galactic
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diffuse emission. More recently, Ref. [19] showed that some of the practical issues associated with
imperfect background modeling can be alleviated by marginalizing over the large-scale structure of
the diffuse model in the basis of spherical harmonics. In this work, we present a complementary
approach that uses Gaussian processes and recent advances in variation inference to build flexible
models of the Galactic diffuse emission with the goal of robustly characterizing the γ-ray sky.

2 Model and inference

Template regression Template regression is a standard technique in astrophysics and cosmology
where spatially and/or spectrally binned data is described through a set of spatial templates, binned
the same way as the data, each representing the contribution of a particular modeled component,
either signal or background. For counts data, Poisson template regression is often employed, where
the data is assumed to be a Poisson realization of the modeled emission. Focusing on a single spectral
bin with p indexing spatial bins, we have the pixel-wise counts data dp ∼ Pois (µp(θ)), where θ
represents the template parameters. Most commonly, the template parameters correspond to overall
normalizations Ai of the individual spatial templates T p

i , i.e. µp(θ) =
∑

iAiT
p
i . This framework

is often employed to search for the evidence of a particular signal (e.g., emission of dark matter
origin) in counts data while accounting for uncertainties in the normalizations of background template
parameters in either a Bayesian [21] of frequentist [22] setting.

Beyond Poisson template regression, methods based on the 1-point PDF of photon counts can
model the contribution of populations of unresolved PSs to the counts data, where each PS is too
dim to be resolved individually but the collective emission from the population can be detected
statistically [23, 24]. These methods can be used in a model comparison setting to differentiate
between PS-like (‘clumpy’) and DM-like (‘smooth’) origins of a signal following a given spatial
morphology. While we focus on the simpler case of Poisson regression in this work, extensions
to non-Poissonian template fitting are easily admitted by modifying the likelihood and introducing
additional parameters characterizing the contribution of unresolved PS populations [25].

Augmenting the diffuse template with Gaussian Processes A major drawback of traditional
template regression methods is that the spatial variation of various modeled contributions is fixed to
that specified by the templates T p

i , with the only flexibility afforded through an overall normalization
Ai. In practice, the spatial emission profile of certain background components is not well-constrained,
and the use of rigid templates for these can introduce significant biases. Here, the goal is to mitigate
these issues by give additional spatial freedom to certain background templates—in particular, the
Galactic diffuse emission template—in order to enable more robust characterization of the other
modeled contributions. We propose doing so using Gaussian processes (GPs), which define a prior
distribution over the space of functions such that any collection of function values, evaluated at any
collection of points, has a multivariate Gaussian distribution. In particular, [f (x1) , . . . , f (xn)] ∼
N (m,K), where the covariance function Kij = k (xi, xj) controls the inductive biases of the
GP model, e.g. its smoothness and periodicity, and the mean function m is often set to zero (see
Refs. [26, 27] for a review). Here we employ the Matérn kernel, and fix the smoothness parameter
ν = 5/2, which was found to work well in the present context. The more commonly used exponential
quadratic kernel, which corresponds to the ‘infinite smoothness’ limit ν →∞ of the Matérn kernel,
was found to generally be too smooth for the present application. The lengthscale and variance of the
kernel are hyperparameters of the GP. Since we are interested in modeling processes on (a sub-region
of) the celestial sphere, we use the great-circle distance (in angular units) as our distance measure.

Treating the other templates as before using an overall normalization factor, following Ref. [19] we
modulate the Galactic diffuse template (denoted with subscript ‘dif’) by a Gaussian process so that
the overall model is described by

dp ∼ Pois

∑
i 6=dif

AiT
p
i + exp (fp)AdifT

p
dif

 (1)

where f ∼ N (m,K) is the GP component and an exponential link function is used to ensure
positivity of the zero-mean GP component. We fix the non-GP multiplicative coefficient of the diffuse
template Adif to the best-fit value found through a maximum-likelihood fit of the model without the
GP component in our region of interest. We note that setting the GP mean to zero does not imply a
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zero predictive mean, and the GP component has ample freedom to model departures from the mean
obtained in the initial fit.

Our ultimate goal is latent function inference, and there is not a distinction between training and
test data points here as is often the case in applications of GPs to predictive models. In addition
to the fact that the marginal/predictive likelihoods are not analytically tractable in this setting with
a non-Gaussian likelihood, the datasets in question can be relatively large with npix ∼ O(104)
data points. We thus make use of sparse variational Gaussian process (SVGP) methods [28–30]
implemented through GPyTorch [31], further relying on PyTorch [32].

Variational inference Our ultimate goal is to characterize the contribution of various templates
and models to γ-ray data in parallel to learning the structure of the Gaussian process that accounts
for large-scale uncertainties in the Galactic diffuse template. Even in the realm of sparse GPs,
sampling the posterior distribution of various template parameters in conjunction with learning
the GP (hyper)parameters is computationally expensive. Variational inference tackles this issue by
approximating the posterior over parameters of interest with a simpler parameterized distribution,
known as the variational distribution. The approximate density is then fit by maximizing a lower
bound on the marginal log-likelihood, the evidence lower bound (ELBO) [33, 34].

For the Gaussian process component, the posterior of function values fu over a smaller number
nu ≤ npix of inducing points located at xu is approximated using a multivariate Gaussian distribution
q(fu) = N (mu,Ku) with learned mean mu and covariance Ku, and the inducing point locations
xu themselves are learned parameters. The strategy of Ref. [35, 36], implemented in GPyTorch [31],
is employed which uses a GP that jointly models the distribution of function values at the locations of
the inducing points and pixel locations, and then marginalizes out the function values at the inducing
points giving the desired variational distribution for the GP function values fp at the pixel locations
xp, i.e. q(fp) =

∫
dfu p(fp|fu) q(fu).

Besides the variational treatment of the GP component, a parametric form for the variational distribu-
tion over the model parameters characterizing the other spatial templates—in this case, the template
normalizations—has to be chosen. A common choice is to again describe the joint variational distribu-
tion over all the parameters as a multivariate Gaussian with learned mean and covariance. This choice
has several drawbacks for the present application—it restricts the form of the template parameter
posteriors to (correlated) Gaussian distributions, and is additionally unable to model correlations
between the GP component and template parameters. The ability to model such correlations and more
complicated posterior distributions may be especially important in applications beyond the Poisson
regression case we consider here—one can imagine, e.g., residuals associated to PS populations to be
highly correlated with the GP latent function.

To allow for more expressive posterior distributions for the template parameters Ai and model
correlations between the posteriors of the GP and template parameters, we use normalizing flows [37]
conditioned on summary statistics s(f) of the GP samples to model the variational distribution of
the template parameters q(Ai|s(f)). This is done following Ref. [29], starting with a unit Gaussian
base distribution with diagonal covariance N (0, I) and applying a series of inverse autoregressive
flow (IAF) transformation—normalizing flows containing masked autoregressive neural networks
(NNs) [38]—to model the template parameter variational distributions. The autoregressive NNs
are augmented to take in additional context variables as inputs in order to condition the template
posteriors on variables s(f) summarizing samples from the GP variational distribution (see Ref. [39]
for details). In this work, we use a setup with 4 IAF transformations and autoregressive NNs with 3
hidden layers and 10 times the number of nodes per layer as input (template) parameters. The per-
pixel-normalized dot product of the (exponentiated) GP sample exp (fp) with each spatial template
as well as the mean and square root of the spatial variance of exp (fp) over the pixel locations xp
are used as context variables for conditioning the transformations in order to capture correlations
between the GP and template parameters. We note that additional context variables characterizing
the GP sample or even the entire GP map (or a downgraded version of it) may be used as inputs
to the NNs in order to capture subtler correlations between the template and GP components, as
required. The variational model is constructed using Pyro [40], with GPyTorch [31] used to to model
the variational GP components.
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Figure 1: (Top left) Pixel-wise 95% highest-posterior density interval (blue band) and median (blue
line) of the GP posterior-predictive distribution, along with the true multiplicative modeling between
the Model O (in simulation) and p6v11 (in fit) diffuse background models (red line). Pixel indices
cross the map left to right, starting from the top. The inset shows a zoomed-in region closest to the
Galactic Center (l, b) = (0◦, 0◦). The Gaussian process is seen to faithfully describe uncertainty in
the diffuse model on larger scales. (Top right) The median inferred map of multiplicative mismodeling
in the analysis region of interest. (Bottom row) Samples from the posterior-predictive distributions
of the Poissonian template normalizations (blue histograms) and the corresponding ground truths
(vertical red lines).

3 Tests on simulated data

We use simulated Fermi-LAT γ-ray data to validate our pipeline using the example dataset and
templates provided with Refs. [25, 19], corresponding to 413 weeks of data in the 2–20 GeV energy
range (see Ref. [25] for additional information about the dataset). In addition to the γ-ray counts data,
templates corresponding to resolved PSs from the Fermi 3FGL catalog [41], isotropically-uniform
emission, emission from the Fermi bubbles [42], emission from dark matter annihilation following a
squared Navarro-Frenk-White (NFW) [43, 44] spatial profile, and Galactic diffuse emission modeled
using either the p6v11 [45] model or the more recent Model O [19] are provided. The maps are
spatially binned using HEALPix [46, 47] with nside=128. A region of interest (ROI) with latitude
cut |b| > 2◦ and radial cut r < 20◦ is chosen, and resolved PSs from the 3FGL catalog masked at
0.8◦. This corresponds to a typical GCE analysis ROI with npix = 4234 total pixels.

By creating simulated data using one Galactic diffuse model and analyzing it with another diffuse
model, we can get a sense of how well we are able to recover the ‘ground truth’ diffuse mismodeling
introduced in the setup. We create simulated data as a Poisson realization of the sum of templates in
the analysis ROI best-fit to the real Fermi data, using Model O to model the Galactic diffuse emission.
Two separate templates for the Galactic diffuse emission are independently floated for Model O—one
correlated with the gas, accounting for a combination of emission due to bremsstrahlung and neutral
pion decay, and another modeling inverse Compton emission (see Ref. [19] for further details). We
then analyze the simulated data with the p6v11 diffuse model, using Poisson regression with a
GP modulating the single diffuse emission template as in Eq. (1). The GP hyperparameters—its
lengthscale and variance—are fixed to respective mean values obtained by performing an exact GP
regression of the diffuse model used in the fit with a suite of other diffuse models from Ref. [48] (not
including diffuse Model O, which was used to create the simulated data) in the analysis ROI.

Since each pixel is conditionally independent given the model parameters, subsampling can be used
to significantly speed up inference while serving as an additional source of stochasticity during
training. The model is trained using the Adam optimizer [49] with learning rate α = 10−3 and other
parameters set to their default values in the PyTorch implementation, and run for 50,000 iterations
with a subsample size of 1500 and 200 inducing points. Fig. 1 shows the posterior-predictive
distributions for the template normalization parameters (bottom row) as well as the pixel-wise median
and 95% highest-posterior density interval of the exponentiated Gaussian process (top left, shown
as a function of HEALPix pixel index within the analysis ROI), obtained by taking 1000 samples
from the respective predictive distributions. Ground truth values for the template normalizations
and multiplicative mismodeling are shown in red. We see that the GP is able to faithfully model the
residual large-scale mismodeling in the diffuse emission, and the normalizations of the respective
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Poissonian templates are correctly recovered. The median inferred GP map is shown in the top right
panel.

4 Conclusions and outlook

We have introduced a novel method to account for mismodeling in analyses of astrophysical counts
data with a particular emphasis on modeling uncertainties in emission of Galactic diffuse origin in
γ-ray analyses. An immediate application of our method is to characterize the statistical nature of the
Fermi Galactic Center Excess while accounting for large-scale diffuse mismodeling uncertainties,
which would require extending our framework to, e.g., use a likelihood based on the the 1-point PDF
instead of Eq. (1). We defer application of this method to Fermi data, as well as a comparison with
established approaches based on rigid templates and spherical harmonics [19], to future work.

Beyond their application to Poisson regression and 1-point PDF methods, GPs can also be naturally
included as components of machine learning-aided γ-ray analyses [50, 51]. Additionally, given
uncertainties in the spatial distribution of the GCE signal itself and their potential to bias statistical
inference of its nature [52, 53], GP-based analyses can be extended to infer the signal morphology in
a data-driven manner.

Code and data used for reproducing the results presented in this paper is available at https://
github.com/smsharma/gamma-gp.

Broader Impact

Accounting for epistemic uncertainty is crucial for making robust conclusions from data in machine
learning applications. This work is part of the broader scientific effort to design and implement
techniques that attempt to incorporate deficiencies in our ability to model consequential aspects of
real-world data in a principled manner.

We acknowledge the importance of considering the ethical implications of scientific research in
general, and machine learning research in particular, as well as of placing both the process and output
of scientific research in a broader societal context. We do not believe the present work presents any
issues in this regard.

Acknowledgments and Disclosure of Funding

We thank Lukas Heinrich for collaboration at the early stages of this work and Neil Lawrence for
helpful comments on the manuscript. KC is partially supported by NSF grant PHY-1505463m,
NSF awards ACI-1450310, OAC-1836650, and OAC-1841471, and the Moore-Sloan Data Science
Environment at NYU. SM is supported by the NSF CAREER grant PHY-1554858, NSF grants
PHY-1620727 and PHY-1915409, and the Simons Foundation. This work was also supported
through the NYU IT High Performance Computing resources, services, and staff expertise. We
thank the Fermi collaboration for making publicly available the γ-ray data used in this work. This
research has made use of NASA’s Astrophysics Data System. This research made use of the
Astropy [54, 55], GPyTorch [31], HEALPix [46, 47], IPython [56], Jupyter [57], Matplotlib [58],
NumPy [59], Pyro [40], PyTorch [32], SciPy [60], and Seaborn [61] software packages.

References
[1] T. R. Slatyer, “Indirect Detection of Dark Matter,” in Theoretical Advanced Study Institute in

Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (2018) pp.
297–353, arXiv:1710.05137 [hep-ph].

[2] M. Lisanti, “Lectures on Dark Matter Physics,” in Theoretical Advanced Study Institute
in Elementary Particle Physics: New Frontiers in Fields and Strings (2017) pp. 399–446,
arXiv:1603.03797 [hep-ph].

[3] L. Goodenough and D. Hooper, “Possible Evidence For Dark Matter Annihilation In The Inner
Milky Way From The Fermi Gamma Ray Space Telescope,” (2009), arXiv:0910.2998 [hep-ph].

5

https://github.com/smsharma/gamma-gp
https://github.com/smsharma/gamma-gp
http://dx.doi.org/ 10.1142/9789813233348_0005
http://dx.doi.org/ 10.1142/9789813233348_0005
http://arxiv.org/abs/1710.05137
http://dx.doi.org/ 10.1142/9789813149441_0007
http://dx.doi.org/ 10.1142/9789813149441_0007
http://arxiv.org/abs/1603.03797
http://arxiv.org/abs/0910.2998


[4] D. Hooper and L. Goodenough, “Dark Matter Annihilation in The Galactic Center As Seen
by the Fermi Gamma Ray Space Telescope,” Phys.Lett. B697, 412 (2011), arXiv:1010.2752
[hep-ph].

[5] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R.
Slatyer, “The characterization of the gamma-ray signal from the central Milky Way: A case for
annihilating dark matter,” Phys. Dark Univ. 12, 1 (2016), arXiv:1402.6703 [astro-ph.HE].

[6] S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and W. Xue, “Evidence for Unresolved γ-Ray
Point Sources in the Inner Galaxy,” Phys. Rev. Lett. 116, 051103 (2016), arXiv:1506.05124
[astro-ph.HE].

[7] R. Bartels, S. Krishnamurthy, and C. Weniger, “Strong support for the millisecond pulsar origin
of the Galactic center GeV excess,” Phys. Rev. Lett. 116, 051102 (2016), arXiv:1506.05104
[astro-ph.HE].

[8] O. Macias, C. Gordon, R. M. Crocker, B. Coleman, D. Paterson, S. Horiuchi, and M. Pohl,
“Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess,” Nat.
Astron. 2, 387 (2018), arXiv:1611.06644 [astro-ph.HE].

[9] O. Macias, S. Horiuchi, M. Kaplinghat, C. Gordon, R. M. Crocker, and D. M. Nataf, “Strong
Evidence that the Galactic Bulge is Shining in Gamma Rays,” JCAP 1909, 042 (2019),
arXiv:1901.03822 [astro-ph.HE].

[10] R. Bartels, E. Storm, C. Weniger, and F. Calore, “The Fermi-LAT GeV excess as a tracer of
stellar mass in the Galactic bulge,” Nat. Astron. 2, 819 (2018), arXiv:1711.04778 [astro-ph.HE].

[11] A. W. Strong and I. V. Moskalenko, “Propagation of cosmic-ray nucleons in the Galaxy,”
Astrophys. J. 509, 212 (1998), arXiv:astro-ph/9807150.

[12] A. W. Strong and I. V. Moskalenko, “The GALPROP program for cosmic-ray propagation: new
developments,” (1999), astro-ph/9906228.

[13] C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Ligorini, P. Ullio, and
D. Grasso, “Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical
ingredients,” JCAP 02, 015 (2017), arXiv:1607.07886 [astro-ph.HE].

[14] F. Calore, I. Cholis, and C. Weniger, “Background model systematics for the Fermi GeV excess,”
JCAP 1503, 038 (2015), arXiv:1409.0042 [astro-ph.CO].

[15] M. Ajello et al. (Fermi-LAT), “Fermi-LAT Observations of High-Energy γ-Ray Emission
Toward the Galactic Center,” Astrophys. J. 819, 44 (2016), arXiv:1511.02938 [astro-ph.HE].

[16] T. Linden, N. L. Rodd, B. R. Safdi, and T. R. Slatyer, “High-energy tail of the Galactic Center
gamma-ray excess,” Phys. Rev. D94, 103013 (2016), arXiv:1604.01026 [astro-ph.HE].

[17] R. K. Leane and T. R. Slatyer, “Revival of the Dark Matter Hypothesis for the Galactic Center
Gamma-Ray Excess,” Phys. Rev. Lett. 123, 241101 (2019), arXiv:1904.08430 [astro-ph.HE].

[18] E. Storm, C. Weniger, and F. Calore, “SkyFACT: High-dimensional modeling of gamma-
ray emission with adaptive templates and penalized likelihoods,” JCAP 1708, 022 (2017),
arXiv:1705.04065 [astro-ph.HE].

[19] M. Buschmann, N. L. Rodd, B. R. Safdi, L. J. Chang, S. Mishra-Sharma, M. Lisanti, and
O. Macias, “Foreground Mismodeling and the Point Source Explanation of the Fermi Galactic
Center Excess,” Phys. Rev. D 102, 023023 (2020), arXiv:2002.12373 [astro-ph.HE].

[20] L. J. Chang, M. Lisanti, and S. Mishra-Sharma, “Search for dark matter annihilation in the
Milky Way halo,” Phys. Rev. D98, 123004 (2018), arXiv:1804.04132 [astro-ph.CO].

[21] S. Hoof, A. Geringer-Sameth, and R. Trotta, “A Global Analysis of Dark Matter Signals from
27 Dwarf Spheroidal Galaxies using 11 Years of Fermi-LAT Observations,” JCAP 02, 012
(2020), arXiv:1812.06986 [astro-ph.CO].

6

http://dx.doi.org/10.1016/j.physletb.2011.02.029
http://arxiv.org/abs/1010.2752
http://arxiv.org/abs/1010.2752
http://dx.doi.org/10.1016/j.dark.2015.12.005
http://arxiv.org/abs/1402.6703
http://dx.doi.org/ 10.1103/PhysRevLett.116.051103
http://arxiv.org/abs/1506.05124
http://arxiv.org/abs/1506.05124
http://dx.doi.org/10.1103/PhysRevLett.116.051102
http://arxiv.org/abs/1506.05104
http://arxiv.org/abs/1506.05104
http://dx.doi.org/ 10.1038/s41550-018-0414-3
http://dx.doi.org/ 10.1038/s41550-018-0414-3
http://arxiv.org/abs/1611.06644
http://dx.doi.org/10.1088/1475-7516/2019/09/042
http://arxiv.org/abs/1901.03822
http://dx.doi.org/ 10.1038/s41550-018-0531-z
http://arxiv.org/abs/1711.04778
http://dx.doi.org/ 10.1086/306470
http://arxiv.org/abs/astro-ph/9807150
http://arxiv.org/abs/astro-ph/9906228
http://dx.doi.org/ 10.1088/1475-7516/2017/02/015
http://arxiv.org/abs/1607.07886
http://dx.doi.org/ 10.1088/1475-7516/2015/03/038
http://arxiv.org/abs/1409.0042
http://dx.doi.org/10.3847/0004-637X/819/1/44
http://arxiv.org/abs/1511.02938
http://dx.doi.org/ 10.1103/PhysRevD.94.103013
http://arxiv.org/abs/1604.01026
http://dx.doi.org/10.1103/PhysRevLett.123.241101
http://arxiv.org/abs/1904.08430
http://dx.doi.org/10.1088/1475-7516/2017/08/022
http://arxiv.org/abs/1705.04065
http://dx.doi.org/ 10.1103/PhysRevD.102.023023
http://arxiv.org/abs/2002.12373
http://dx.doi.org/ 10.1103/PhysRevD.98.123004
http://arxiv.org/abs/1804.04132
http://dx.doi.org/ 10.1088/1475-7516/2020/02/012
http://dx.doi.org/ 10.1088/1475-7516/2020/02/012
http://arxiv.org/abs/1812.06986


[22] M. Lisanti, S. Mishra-Sharma, N. L. Rodd, B. R. Safdi, and R. H. Wechsler, “Mapping
Extragalactic Dark Matter Annihilation with Galaxy Surveys: A Systematic Study of Stacked
Group Searches,” Phys. Rev. D97, 063005 (2018), arXiv:1709.00416 [astro-ph.CO].

[23] D. Malyshev and D. W. Hogg, “Statistics of gamma-ray point sources below the Fermi detection
limit,” Astrophys. J. 738, 181 (2011), arXiv:1104.0010 [astro-ph.CO].

[24] S. K. Lee, M. Lisanti, and B. R. Safdi, “Distinguishing Dark Matter from Unresolved Point
Sources in the Inner Galaxy with Photon Statistics,” JCAP 1505, 056 (2015), arXiv:1412.6099
[astro-ph.CO].

[25] S. Mishra-Sharma, N. L. Rodd, and B. R. Safdi, “NPTFit: A code package for Non-Poissonian
Template Fitting,” Astron. J. 153, 253 (2017), arXiv:1612.03173 [astro-ph.HE].

[26] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning) (The MIT Press, 2005).

[27] A. G. Wilson, Covariance kernels for fast automatic pattern discovery and extrapolation with
Gaussian processes, Ph.D. thesis (2014).

[28] M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,” in
Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, Vol. 5, edited by D. van Dyk and M. Welling
(PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 2009) pp. 567–574.

[29] J. Quiñonero-Candela and C. E. Rasmussen, “A Unifying View of Sparse Approximate Gaussian
Process Regression,” Journal of Machine Learning Research 6, 1939 (2005).

[30] J. Hensman, N. Durrande, and A. Solin, “Variational fourier features for gaussian processes,”
Journal of Machine Learning Research 18, 1 (2018).

[31] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson, “GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU Acceleration,” in Advances in Neural
Information Processing Systems (2018).

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, in Advances in Neural Information
Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Curran Associates, Inc., 2019) pp. 8024–8035.

[33] D. Wingate and T. Weber, “Automated Variational Inference in Probabilistic Programming,”
arXiv:1301.1299 [cs, stat] (2013), arXiv: 1301.1299.

[34] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” The
Journal of Machine Learning Research 14, 1303 (2013).

[35] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big data,” in Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13 (AUAI Press,
Arlington, Virginia, USA, 2013) pp. 282–290.

[36] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable Variational Gaussian Process
Classification,” (PMLR, San Diego, California, USA, 2015) pp. 351–360.

[37] D. Rezende and S. Mohamed, “Variational Inference with Normalizing Flows,” (PMLR, Lille,
France, 2015) pp. 1530–1538.

[38] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “MADE: Masked Autoencoder for
Distribution Estimation,” in International Conference on Machine Learning (2015) pp. 881–
889.

[39] B. Paige and F. Wood, “Inference networks for sequential monte carlo in graphical models,”
in Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16 (JMLR.org, 2016) pp. 3040–3049.

7

http://dx.doi.org/ 10.1103/PhysRevD.97.063005
http://arxiv.org/abs/1709.00416
http://dx.doi.org/10.1088/0004-637X/738/2/181
http://arxiv.org/abs/1104.0010
http://dx.doi.org/10.1088/1475-7516/2015/05/056
http://arxiv.org/abs/1412.6099
http://arxiv.org/abs/1412.6099
http://dx.doi.org/ 10.3847/1538-3881/aa6d5f
http://arxiv.org/abs/1612.03173
http://proceedings.mlr.press/v5/titsias09a.html
https://www.jmlr.org/papers/v6/quinonero-candela05a.html
http://jmlr.org/papers/v18/16-579.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1301.1299


[40] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. A.
Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep Universal Probabilistic Programming,”
J. Mach. Learn. Res. 20, 28:1 (2019).

[41] F. Acero et al. (Fermi-LAT), “Fermi Large Area Telescope Third Source Catalog,” Astrophys. J.
Suppl. 218, 23 (2015), arXiv:1501.02003 [astro-ph.HE].

[42] M. Su, T. R. Slatyer, and D. P. Finkbeiner, “Giant Gamma-ray Bubbles from Fermi-LAT:
AGN Activity or Bipolar Galactic Wind?” Astrophys.J. 724, 1044 (2010), arXiv:1005.5480
[astro-ph.HE].

[43] J. F. Navarro, C. S. Frenk, and S. D. M. White, “The Structure of Cold Dark Matter Halos,”
Astrophys. J. 462, 563 (1996), astro-ph/9508025.

[44] J. F. Navarro, C. S. Frenk, and S. D. White, “A Universal density profile from hierarchical
clustering,” Astrophys.J. 490, 493 (1997), arXiv:astro-ph/9611107 [astro-ph].

[45] “Description and Caveats for the LAT Team Model of Diffuse Gamma-Ray Emission,” https:
//fermi.gsfc.nasa.gov/ssc/data/access/lat/ring_for_FSSC_final4.pdf, ac-
cessed: 2020-10-20.

[46] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and
M. Bartelman, “HEALPix - A Framework for high resolution discretization, and fast analysis
of data distributed on the sphere,” Astrophys. J. 622, 759 (2005), arXiv:astro-ph/0409513
[astro-ph].

[47] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. Gorski, “healpy: equal
area pixelization and spherical harmonics transforms for data on the sphere in python,” Journal
of Open Source Software 4, 1298 (2019).

[48] M. Ackermann et al. (Fermi-LAT), “The spectrum of isotropic diffuse gamma-ray emission
between 100 MeV and 820 GeV,” Astrophys. J. 799, 86 (2015), arXiv:1410.3696 [astro-ph.HE].

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, edited by Y. Bengio and Y. LeCun (2015).

[50] F. List, N. L. Rodd, G. F. Lewis, and I. Bhat, “The GCE in a New Light: Disentangling the
γ-ray Sky with Bayesian Graph Convolutional Neural Networks,” (2020), arXiv:2006.12504
[astro-ph.HE].

[51] S. Caron, G. A. Gómez-Vargas, L. Hendriks, and R. Ruiz de Austri, “Analyzing γ-rays of the
Galactic Center with Deep Learning,” JCAP 05, 058 (2018), arXiv:1708.06706 [astro-ph.HE].

[52] R. K. Leane and T. R. Slatyer, “Spurious Point Source Signals in the Galactic Center Excess,”
Phys. Rev. Lett. 125, 121105 (2020), arXiv:2002.12370 [astro-ph.HE].

[53] R. K. Leane and T. R. Slatyer, “The enigmatic Galactic Center excess: Spurious point sources
and signal mismodeling,” Phys. Rev. D 102, 063019 (2020), arXiv:2002.12371 [astro-ph.HE].

[54] T. P. Robitaille et al. (Astropy), “Astropy: A Community Python Package for Astronomy,” Astron.
Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM].

[55] A. Price-Whelan et al., “The Astropy Project: Building an Open-science Project and Status of
the v2.0 Core Package,” Astron. J. 156, 123 (2018), arXiv:1801.02634.

[56] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific computing,” Computing
in Science and Engineering 9, 21 (2007).

[57] T. Kluyver et al., “Jupyter notebooks - a publishing format for reproducible computational
workflows,” in ELPUB (2016).

[58] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing In Science & Engineering
9, 90 (2007).

8

http://jmlr.org/papers/v20/18-403.html
http://dx.doi.org/10.1088/0067-0049/218/2/23
http://dx.doi.org/10.1088/0067-0049/218/2/23
http://arxiv.org/abs/1501.02003
http://dx.doi.org/10.1088/0004-637X/724/2/1044
http://arxiv.org/abs/1005.5480
http://arxiv.org/abs/1005.5480
http://arxiv.org/abs/astro-ph/9508025
http://dx.doi.org/10.1086/304888
http://arxiv.org/abs/astro-ph/9611107
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/ring_for_FSSC_final4.pdf
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/ring_for_FSSC_final4.pdf
http://dx.doi.org/10.1086/427976
http://arxiv.org/abs/astro-ph/0409513
http://arxiv.org/abs/astro-ph/0409513
http://dx.doi.org/10.21105/joss.01298
http://dx.doi.org/10.21105/joss.01298
http://dx.doi.org/10.1088/0004-637X/799/1/86
http://arxiv.org/abs/1410.3696
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2006.12504
http://arxiv.org/abs/2006.12504
http://dx.doi.org/10.1088/1475-7516/2018/05/058
http://arxiv.org/abs/1708.06706
http://dx.doi.org/10.1103/PhysRevLett.125.121105
http://arxiv.org/abs/2002.12370
http://dx.doi.org/10.1103/PhysRevD.102.063019
http://arxiv.org/abs/2002.12371
http://dx.doi.org/ 10.1051/0004-6361/201322068
http://dx.doi.org/ 10.1051/0004-6361/201322068
http://arxiv.org/abs/1307.6212
http://dx.doi.org/ 10.3847/1538-3881/aabc4f
http://arxiv.org/abs/1801.02634
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53


[59] C. R. Harris et al., “Array programming with NumPy,” Nature 585, 357 (2020).

[60] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nature Methods 17, 261 (2020).

[61] M. Waskom et al., “mwaskom/seaborn: v0.8.1 (september 2017),” (2017).

9

http://dx.doi.org/ 10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.5281/zenodo.883859

	Introduction
	Model and inference
	Tests on simulated data
	Conclusions and outlook

