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and Particle Physics

• Traditional -ray analyses model data as a sum of rigid spatial templates, each corresponding to a 
specific astrophysical component [4] 

• We modulate the poorly-understood Galactic background templates by a Gaussian process (GP) in order 
to give them more freedom and account for uncertainty in their spatial variation 

• The GP is included as part of a larger probabilistic model that includes parameters describing other 
modeled components, including a dark matter signal. Variational inference is used for tractable analysis.
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Summary

Traditional template fitting • Spatially-binned (pixelized) data  is modeled as a Poisson realization of sum of templates  
• Spatial profile of each template is rigidly fixed  
• Normalizations  of templates are floated as free parameters of the model
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Augmenting Galactic background  
template with a GP
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Proof-of-principle analysis on simulated data

Motivation
• Signals of dark matter (DM) may be hiding in -ray observations of the Galactic Center 
• Galactic backgrounds of astrophysical origin make up a large fraction (  80%) of the data in 

this region 
• The poorly-understood spatial morphology of these backgrounds makes it difficult to 

characterize DM signals [1-2] 
• Motivates analysis techniques that can account for uncertainty in knowledge of Galactic 

background contribution (e.g., Refs. [3,5])
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Full-sky -ray data  
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Galactic Center region 

(4234 pixels) “Bubbles” template Tbub

• Modulate Galactic background template with GP 
• Exponential link function to ensure positivityIsotropic template Tiso Point sources template TPS Dark matter template TDM
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[2010.10450] 

https://github.com/smsharma/gamma-gp

Dark matter signal model Two different Galactic background models
Model 1 Model 2
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Ratio of Galactic background templates Model 1 (in simulation) and Model 2 (in analysis), inferred via GP ( ) vs truth ( )

Inferred GP posterior ( ) tracks the true ratio of Galactic background templates ( ) 
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• Create simulated data using one Galactic background model (Model 1), analyze using 
other model (Model 2) (templates from Refs. [5-6]) 

• GP used for variational posterior defined using GPyTorch    [7] and Pyro     [8] 
• Variational distributions of non-GP parameters (template normalizations) 

defined using inverse autoregressive flows conditioned on GP summary statistics in order 
to capture correlations between GP and non-GP parameters
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Posteriors of non-GP parameters (template normalizations)
“Bubbles” template norm Isotropic template norm Point sources template norm Dark matter template norm
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