
Wyckoff Set Regression for Materials Discovery

Rhys E. A. Goodall
Cavendish Laboratory

University of Cambridge
Cambridge, CB3 0HE, UK

Abhijith S. Parackal
IFM - Theoretical Physics,

Linköping University,
Linköping, SE-58183, Sweden

Felix A. Faber
Cavendish Laboratory

University of Cambridge
Cambridge, CB3 0HE, UK

Rickard Armiento
IFM - Theoretical Physics,

Linköping University,
Linköping, SE-58183, Sweden

Alpha A. Lee
Cavendish Laboratory

University of Cambridge
Cambridge, CB3 0HE, UK

Abstract

In recent years machine learning has been shown to be able to approximate the
accuracy and amortise the computational cost of ab-initio quantum mechanics
calculations. This has opened up many exciting use cases in the study of materials
in-silico. However, the majority of the these works make use of atomic positions as
inputs which limits their application to novel material discovery applications where
crystal structures are a-priori unknown. For a model to see useful application in
materials discovery we need to be able to enumerate its inputs over a possible design
space of new materials. In this work, we build upon a recent machine learning
framework for material science that operates on the stoichiometry of materials and
extend it to look at Wyckoff sets. We show that operating on Wyckoff sets allows
the model to handle compositions with multiple polymorphs, therefore, overcoming
one of the major limitations of composition-based models whilst maintaining the
key benefit of having a combinatorially enumerable input space.

1 Introduction

In recent years there has been a boom in academic work applying novel graph-based models to
small organic molecules for applications in cheminformatics and drug discovery [1, 2]. Many works
inspired by such pioneering activities have attempted to realise a similar paradigm in the study of
inorganic crystalline materials [3, 4]. However, whilst it is possible to combinatorially generate huge
numbers of potentially viable molecules using rules based chemistry [5] it is not possible to generate
stable crystalline structures in a similar way. This limits the ways in which we can use structure-based
machine learning models to discover novel materials. Although on-the-fly and hybrid DFT-ML force
field workflows [6, 7, 8] have shown early promise for accelerating structure relaxations, even with
these advances crystal structure searching remains computationally costly, limiting the number of
candidates that can be considered.

In order to investigate larger search spaces several groups have argued for using composition-based
models [9, 10, 11, 12] to triage discovery workflows as they do not require atomic positions as
input. Such models can be used to de-risk the discovery process by restricting the search space
to compositions more likely to give rise to stable polymorphs, therefore, reducing the number of
computationally expensive crystal structure searches that need to be conducted. Alternatively, others
have proposed restricting searches to given structure prototypes e.g. perovskites [13] or elpasolites
[14] where the structural constraint allows for crystal structure searching to be avoided entirely.
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Figure 1: The figure shows a toy 2D crystal with 3 occupied Wyckoff positions. The shaded regions
illustrate the regions the relevant atoms are constrained to lie in by specifying an anonymised Wyckoff
position for that atom.

In this extended abstract we introduce preliminary work on a new model that combines the bene-
fits of these two different approaches by imposing constraints on the symmetries of the structures
through considering anonymised Wyckoff sets. In theory this approach maintains the flexibility of
composition-based models to conduct combinatorial searches across materials space whilst simul-
taneously reducing the burden of the necessary crystal structure searching by providing symmetry
constraints for the structure relaxations.

2 Discovery of Novel Stable Inorganic Materials

2.1 Premise

Only a small proportion of possible material compositions (believed to be of the order 10100 [15])
will have dynamically stable polymorphs with formation enthalpies per atom sufficiently low that they
lie near to or on the convex hull of thermodynamically stable materials. Finding new compositions
and the associated structures of the thermodynamically stable/meta-stable polymorphs in silico with
minimal computational cost is a central problem in computational material science. Currently the
only feasible high-throughput methods for structure searching are based on prototyping methods that
substitute new atoms into known prototypes [16, 17]. Whilst these methods have allowed for rapid
expansion of high-throughput databases large amounts of computation are still wasted on relaxing
and determining formation enthalpies for prototypes structures that end up being unstable. A model
that can be used to triage and select which relaxations to carry out would allow for cheaper and
therefore more extensive expansion of high-throughput databases. However, building such a model
hinges on identifying model input features that are sufficiently informative to allow for accurate
predictions for the expected formation enthalpy, able to discriminate between polymorphs, and are
cheap to enumerate for a novel design space. We propose that using model inputs derived from the
concept of a Wyckoff set offers a promising compromise.

2.2 Wyckoff Set Regression

In crystallography we can completely specify a materials crystal structure with a combination of: 1)
the spacegroup of the structure, 2) the dimensions of its unit cell, and 3) a set of Wyckoff positions
and the elements that sit on them. Wyckoff positions describe sites that map onto equivalent sites
under the symmetry transformations of the given spacegroup, as a consequence a single Wyckoff
position can detail the positions of multiple atoms.

Here, we consider anonymised Wyckoff positions where we discard the information about the exact
positions (see Figure 1) such that we can enumerate over a design space of potential Wyckoff
sequences. Importantly it is possible, even common, for a material structure to contain multiple
instances of a given anonymised Wyckoff position i.e. we need a model that can consider multi-sets
of anonymised Wyckoff positions.

The key question is given an anomymised Wyckoff set for a material can we train a model that
accurately predicts the formation enthalpy per atom? We tackle this as a multi-set regression problem
using a message passing neural network architecture based on the Roost model [11], we call this
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model Wren (Wyckoff Representation Network). The principle idea behind the models is to consider
all directed pairwise combinations in the set and use them to update the representations of elements
in the set via message passing operations [18]. These message passing stages are repeated multiple
times before a permutation invariant pooling operation is applied to the set to get a fixed-length
representation. A full description of the architecture and update rules of the Wren model is given
in Appendix A. We also note the existence of a previous model, abcNN, that attempted to tackle a
similar problem using a sparse descriptor tensor as the input to a CNN-based architecture [19].

2.3 Data

Whilst screening via anonymised Wyckoff sets does not require explicit knowledge of the relaxed
crystal structure we do require such knowledge in order to generate the labelled anonymised Wyckoff
sets used to the train the model. Here we use structures drawn from the Materials Project catalogue
[20] and train the model to predict the formation enthalpy per atom. We restrict the query to materials
with less than 64 atoms and 16 Wyckoff positions in their unit cells. We clean the queried data to
remove materials with a volume per atom of greater than 500 Å3. We use the spglib python package
[21] to assign spacegroups and Wyckoff positions to the structures in the data set, for ease we use the
same tolerance values as used by Materials Project (positions to 0.1 Å and angles to 5◦). After the
cleaning and processing procedure we were left with 94,319 data points which were then randomly
partitioned 80:20 into a training set and test set.

3 Results and Discussion

In order to get an understanding of the Wren model’s performance we benchmark against the reference
architectures for Roost [11] and CGCNN [22] released by their respective authors. The CGCNN
model is a graph neural network that acts on the extended connectivity graph of the atom positions,
the reference architecture considers up to 12 neighbours within 8 Å of each atom in the structure
to build this graph. All the models were trained to minimise the L1 loss between the predicted and
target formation enthalpies. The Adam optimiser was used with a fixed learning rate of 3× 10−4,
weight decay parameter of 10−6 and mini-batch size of 128 for all the experiments. The models were
trained for 200 epochs.

Figure 2 shows a comparison of the models and gives aggregate metrics of their performances. As
expected CGCNN performs the best out of the three models. However, as it uses relaxed DFT
structures to generate model inputs CGCNN it cannot be used to screen novel materials where the
structures are a priori unknown. Whilst Wren doesn’t quite match the accuracy of CGCNN, achieving
a mean absolute error (MAE) of 0.07 eV per atom compared to 0.05 eV per atom, it completely
avoids any costs associated with DFT when screening as its inputs can be enumerated combinatorially.
The inputs to the Roost model can also be trivially enumerated, however, its inability to distinguish
between polymorphs leads to it being far less accurate (MAE of 0.12 eV per atom). This comparison
shows that Wren is indeed a compelling approach for accelerating materials discovery ripe for further
investigation and development.

Given a structure, determining the Wyckoff sequence is actually a non-trivial task, selecting the toler-
ances is a careful balance between wanting to minimise the number of structures that approximately
satisfy larger numbers of symmetries being assigned to relatively "uninformative" lower symmetry
spacegroups (i.e. P1 (No. 1) and P1̄ (No. 2)) whilst equally not wanting to assign symmetries to
structures that are not present due to the tolerances being too loose. However, perhaps unintuitively,
we see that the model doesn’t perform significantly worse on the "uninformative" space groups. While
a priori we might consider P1 to be the most "uninformative" spacegroup the model achieves a MAE
of 0.10 eV per atom which is comparable to the average test set result of 0.07 eV per atom. In contrast,
there are other highly symmetrical spacegroups, where we might expect better performance, that
result in higher errors. One example is Pm3̄m (No. 221) where we get a MAE of 0.14 eV per atom
despite the fact that it is relatively abundant in the training set with ∼2400 examples. At the other
extreme, in Pbam (No. 55) and I4̄ (No. 82) we achieve MAEs of 0.03 eV per atom with only ∼600
training set examples. The take away from this is that whilst the additional information available
through the consideration of Wyckoff positions allows the Wren model to deal with polymorhpic
freedoms how beneficial this information is for improving the fit of the model depends on the diversity
within the training and testing data i.e. the Pm3̄m structures present in Materials Project might be far
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Figure 2: Scatter plots showing model performance on the test set for the Roost, Wren, and CGCNN
models. The points are shaded by their log density and marginal histograms are shown to show how
the results are distributed. The red dotted lines are robust (Huber) lines of best fit.

more structurally diverse than the Pbam structures and therefore making it harder for the model to fit
that region of the materials space. Similarly the P1 structures might have a low structural diversity in
the data set such that the lack of symmetrical constraints is unimportant as only a restricted subset of
such structures without symmetries have been observed in experiments1. This result is supported
by the fact that the Roost model manages to achieve an error of 0.12 eV per atom on P1 structures
which is comparable to the Wren model whilst much larger jumps are seen for other spacegroups e.g.
Fm3̄m (No. 225) jumps from 0.04 to 0.25 eV per atom when comparing Wren and Roost on the test
set (This large jump can be attributed to the fact that for many binary compositions both α (Pm3̄m)
and β (Fm3̄m) CsCl-type structures are present in Materials Project).

4 Conclusions and Future Work

The preliminary results of this work are promising with potential to provide a new efficacious
alternative to structure prototyping [16, 17] for high-throughput materials discovery workflows.
Whilst the model looks promising in retrospective testing prospective testing will be required in the
future to confirm the utility of the approach. More broadly, we introduce materials discovery via
anonymised Wyckoff sets as a challenging and important set regression task. We hope such a task can
draw more attention to both inorganic materials discovery and set regression [18, 23] as a research
areas within the machine learning community.

Before any prospective deployment we intend to extend the model to allow for uncertainty estimation.
Suitable approaches include the creation of a Deep Ensemble [24] as well as extensions to the
ensemble idea such as Multi-SWAG [25]. Uncertainty estimates would allow the model to be used
as part of an active learning workflow allowing which allow for more efficient exploration of large
search spaces [26].

In further work, we also hope to refine the pre-processing by augmenting the training set using
relabelling operations allowed within the spacegroup (coset representatives of its affine normalizer)
to obtain multiple equivalent Wyckoff sets for each structure. Doing this will improve the support
provided by the training set without requiring additional data. In addition, we intend to investigate
the influence that different symmetry finders have on the model. The symmetry finder is perhaps the
most important hyperparameter of the model as the spacegroup and Wyckoff positions assigned vary
non-trivially depending on the algorithms and tolerances used by the symmetry finder.

Supplementary work is also needed to investigate the implications of using anonymised Wyckoff sets
as inputs. For example; what is the relationship between the number of possible Wyckoff positions
in a spacegroup and the number of training examples needed to achieve a low model error? how
frequently do distinct dynamically stable polymorphs occur with the same anonymised Wyckoff set
and how do such collisions influence model performance?

1The majority of the entries in the Materials Project catalogue are derived from experimentally characterised
structures recorded in the ICSD.
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Broader Impact

Models that are able to alleviate current bottlenecks in in-silico materials discovery will play an
important role in the development of new technologies. The discovery of new materials is often
key to making technologies cheaper and more functional which is necessary if we are to be able to
effectively tackle many current global issues e.g. decarbonisation of the economy relies on developing
cheap alternatives to fossil fuel-based energy technologies for both energy generation and storage.
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A - Full Model Description

In the Wren each Wyckoff position in a given material is represented by a vector. This initial vector is
comprised of three parts: 1) a vector representation of the atom type from [27], 2) a OneHot vector
representation of the Wyckoff position, and 3) the multiplicity of the Wyckoff position. These initial
representations are then multiplied by a n by d learnable weight matrix where n is the size of the
initial vector and d is the size of the internal representations used in the model which we set to 64.
These internal representations are then updated based on the other Wyckoff species present in the
material using a message passing neural network [28]. The mathematical form of the update process
is

ht+1
i = Ut(h

t
i,ν

t
i ) (1)

where hti is the feature vector for the ith Wyckoff position after t updates, νti = {htα, htβ , htγ , ...} is
the set of other Wyckoff positions in the material, and Ut is the Wyckoff position update function
for the t+ 1th update. For this work, we use a weighted soft-attention mechanism for our Wyckoff
position update functions. The first stage of the attention mechanism is to compute unnormalised
scalar coefficients, eij , across pairs of Wyckoff positions in the material.

etij = f t(hti||htj) (2)

where f t(...) is a single-hidden-layer neural network for the t+ 1th update, the j index runs over all
the Wyckoff positions in νti , and || is the concatenation operation. The coefficients eij are directional
depending on the concatenation order of hi and hj . These coefficients are then normalised using a
weighted softmax function where the weights, wj , are the fractional multiplicities of the Wyckoff
positions in the composition,

atij =
wj exp (etij)∑
k wk exp (etik)

. (3)

where j is a given Wyckoff position from νti and the k index runs over all the Wyckoff positions in
νti . The internal representations are then updated in a residual manner [29] with learnt pair-dependent
perturbations weighted by these soft-attention coefficients.

ht+1
i = hti +

∑
j

atijg
t(hti||htj), (4)

where gt(...) is a single-hidden-layer neural network for the t + 1th update and the j index again
runs over all the Wyckoff positions in νti . The f t(...) and gt(...) neural networks use 256 hidden
units and LeakyReLU activation functions.

A fixed-length representation for each material is determined via another weighted soft-attention-
based pooling operation over all the Wyckoff positions. Finally, these material representations are
taken as the input to a feed-forward output neural network to predict the formation enthalpy per atom
for the material. The output network used has 5 hidden layers and ReLU activation functions. The
number of hidden units in each layer is 1024, 512, 256, 126, and 64 respectively and linear skip
connections are added between layers.
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