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Abstract

Solving the seismic full-waveform inversion (FWI) problem can be challenging
due to its ill-posedness and high computational cost. We develop a new hybrid
computational approach to solve FWI that combines physics-based models with
data-driven methodologies. In particular, we develop a data augmentation strategy
that can not only improve the representativity of the training set, but also incorporate
important governing physics into the training process and therefore improve the
inversion accuracy. We demonstrate our method with an example of monitoring
subsurface carbon sequestration leakage. Our method yields higher accuracy and
greater generalization ability than purely physics-based and purely data-driven
approaches.

1 Introduction

Seismic full-waveform inversion (FWI) attempts to reconstruct an image of the subsurface geology
from measurements of natural or artificially produced seismic waves that have travelled through the
subsurface. The seismic FWI problem is challenging due to the non-linearity of the forward model
and its under-determined nature. Conventional computational methods for solving FWI are based
on optimization techniques and generic regularization [11]. For simplicity of description, we call
these approaches “physics-based FWI methods” to distinguish them from data-driven methods, and
from our proposed hybrid approach. The major advantage of these physics-based methods is their
robustness to out-of-distribution data, while disadvantages include computational expense and the
need for explicitly-formulated generic regularization.

Here, we describe a data-driven approach for seismic FWI that incorporates the physics model into
the learning procedure. Specifically, this physics-consistent data-driven full waveform inversion
consists of a carefully designed encoder-decoder-structured neural network and an adaptive data
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augmentation technique. This augmentation employs the forward model to produce new training
data that are more representative of the solution we seek. To validate its performance, we apply our
inversion method to detect carbon sequestration leakage using synthetic seismic data sets generated
using a subsurface model for a potential CO2 storage site at Kimberlina, California [2].

Related Work. A new class of algorithm has recently emerged, based on machine learning applied
to large datasets that are produced from many runs of the forward physics model. In direct end-to-end
learning [1, 3, 5, 12, 13, 14], a large number of velocity maps and corresponding seismic waveforms
(usually constructed through extensive simulation) are used as training data in learning the mapping
from seismic waveform to velocity map. In low-wave number learning [6, 10], this type of learning
approach is used to predict an initial velocity map with low-frequency component, which is then used
as the initial guess for traditional physics-based optimization.

2 Background

Governing Physics: the Forward Model. Mathematically, the forward model can be expressed in
terms of the seismic elastic-wave partial differential equation [11]:

ρ(r)
∂2u(r, t)

∂t2
= (λ(r) + µ(r))∇(∇ · u(r, t)) + µ(r)∇2u(r, t) + s(r, t), (1)

where ρ(r) is the density at spatial location r, λ(r) and µ(r) are the Lamé parameters, s(r, t) is
the source term, u(r, t) is the displacement wavefield, t represents time, and ∇· is the divergence
operator. When fluid such as supercritical CO2 leaks into the subsurface formation, the geophysical
parameters of P-wave and S-wave velocities will be changed correspondingly. Instead of inverting
for ρ(r), λ(r) and µ(r), it is customary to invert for a velocity map m(r) that depends on ρ(r), λ(r)
and µ(r). We discretize r so that the velocity map we seek is m ∈ RM×N , where M and N are
its vertical and lateral dimensions, respectively. Here m refers to either P-wave or S-wave velocity.
Similarly, we denote a seismic data observation dobs ∈ RT×S×R, where T corresponds to the number
of samples in the temporal domain, S to the number of sources and R to the number of receivers
used in the data acquisition process. The seismic data can be expressed in terms of a highly nonlinear
forward mapping:

dobs = f(m), (2)
where the forward operator f represents the wave propagation as provided in Eq. (1).

Physics-Based Inversion. Various explicit regularization techniques have been developed to stabilize
the computation of seismic inversion, including `1-norm [9] and `2-norm [4] methods. Given the
forward model in Eq. (2), the regularized seismic FWI can be posed as

m = argmin
m

{∥∥d− f(m)
∥∥2
2
+ λR(m)

}
, (3)

where d represents a recorded waveform dataset, f(m) is the corresponding forward modeling result,∥∥d− f(m)
∥∥2
2

is the data misfit term, λ is a regularization parameter and R(m) is the regularization
term. The formulation implicitly assumes the Gaussian noise being imposed on the data.

Data-Driven Inversion. A data-driven FWI structure based on an encoder-decoder architecture [12],
denoted G and characterized by hyperparameters θ, is proposed to approximate the inverse mapping
f−1 and obtain accurate velocity map predictions m̂(θ) , G(θ, dobs). Optimal parameters θ∗ are
obtained by adapting the architecture to a representative training set with L samples {dobs,`,m

∗
`}, ` ∈

{0, L− 1}. We choose the mean-absolute error (MAE) as our optimality criterion:

θ∗ = argmin
θ

1

L

L−1∑
`=0

‖m∗
` − m̂`(θ)‖1. (4)

For a more detailed discussion of loss function, please refer to our earlier work [12].

3 Physics-Consistent Data-Driven Full-waveform Inversion

Data Description. We apply our method to detect CO2 leakage in the subsurface. Because direct
subsurface geological measurements are scarce to non-existent, we use the simulated Kimberlina
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Figure 1: Adaptive Data Augmentation: Approximate solver G(θ̂, dobs) is fully-trained over labeled
set {m∗

` , dobs,`}, and applied to unlabeled seismic data dobs,r to generate new velocity maps m̂r.
Physically-coherent seismic data d̂obs,r is then generated using the forward model f , producing a new
labeled set {m̂r, d̂obs,r} which is added to the original training set.

dataset from Lawrence Livermore National Laboratory (and that we refer to here as CO2leak). The
aim of the Kimberlina dataset is to understand and assess the effectiveness of various geophysical
monitoring techniques in detecting CO2 shallow leakage in the wellbore [7]. The CO2leak dataset
contains 991 CO2 leakage scenarios, each simulated over a duration of 200 years, with 20 leakage
maps provided (ie, at every ten years) for each scenario. We obtain synthetic seismograms from
elastic forward modeling on CO2leak velocity maps. First, one-second traces with a time interval
of 0.5ms using 7 sources and 114 receivers are generated. We then down-sample each trace by a
factor of 2, resulting in a temporal dimension of 1000 time steps. The sources and receivers are
evenly distributed along the top of the model, with depths of 5m and 20m, respectively. The source
interval is 125m, and the receiver interval is 15m. We use a Ricker wavelet with a central frequency
of 25Hz as the source to generate simulated seismic waves due to its empirical success in processing
field data [4]. The synthetic data is the staggered grid solution of the elastic wave equation using a
finite-difference scheme with a perfectly matched layered absorbing boundary condition.

Data Augmentation: Incorporation of Physics Knowledge. The CO2leak dataset includes 19, 600
velocity maps of 141 × 341 grid points describing CO2 and brine leakage plumes evolving with
time. It is desirable to detect plumes of leaking CO2 while they are still small. This is particularly
challenging when the available training data is dominated by large plumes. Thus, CO2leak presents
the opportunity to evaluate the generalization of data-driven method regarding different plume sizes.

Along with the data pairs included in the dataset, the ground-truth CO2 and brine mass information
for each sample, is provided. Based on this, the full dataset is split into four parts, according to
their CO2 leak mass plus brine leak mass: tiny plumes (from 3.53 × 102 to 9.10 × 106Kg), small
plumes (from 9.10 × 106 to 2.67 × 107Kg), medium plumes (from 2.67 × 107 to 8.05 × 107Kg),
and large plumes (from 8.05 × 107 to 1.62 × 109 Kg). These cover 20%, 20%, 20%, and 40% of
the data samples, respectively. While conventional data augmentation techniques (such as rotation,
flip, scale etc.) have proved to be effective for computer vision applications, it is not clear that they
have a useful role to play in our application because those invariances do not apply for this problem.
Our adaptive data augmentation scheme provides additional training data that is not only physically
meaningful but also more closely related to the target unlabelled data that we are trying to invert. We
summarize our augmentation method with the following four steps (illustrated in Fig. 1):

i. Estimate approximate solver G(θ̂, dobs);

ii. Generate approximate velocity maps from unlabeled data m̂r = G(θ̂, dobs,r);

iii. Create seismic data using forward model d̂obs,r = f(m̂r);

iv. Add new pairs (d̂obs,r, m̂r) to the original training set.

The augmented dataset plays a key role in model accuracy because it will not only carry useful
physics information, but also provides examples of velocity maps that are consistent with the target
geology feature of interests. Furthermore, the full augmentation process can be applied in an iterative
fashion by re-training the approximate solver G(θ̂, dobs) based on the extended training set in order to
generate new approximate velocity maps m̂r. This approach allows further refinement of the mapping
between velocity and seismic subdomains.
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Figure 3: (a) Ground truth. Inversions obtained using (b) physics-based FWI, data-driven model
trained over (c) the large subset, (d) large and augmented medium subsets (Augmented once), and (e)
large and augmented medium subsets (Augmented twice).

4 Numerical Experiments

Experimental Setup. The training process is performed using a fixed stopping criterion of 250
epochs, random weight initialization, an initial learning rate of 10−3 and its subsequent adaptive
optimization via ADAM [8]. The training is performed using fixed batch sizes of 50, where both
features and labels are normalized prior to their use in the training and inference processes. We
created 392 batches in total. In consequence, reported loss values are computed based on normalized
training and testing pairs. All training and testing routines are implemented using PyTorch code and
executed on four NVIDIA GeForce GTX 1080 GPUs.

Generalization Performance with Data Augmentation. In our test, let the medium unla-
beled subset correspond exclusively to the medium seismic data (the corresponding velocity

Figure 2: Reconstruction results for our data Augmentation
approach applied to unlabeled data: Testing MAE loss value
for each training epoch.

maps are not taken into account).
Then, consider the following two ex-
periments with different training set
while applying to the same medium
subset for test:

Test 1: Train on the large subset.

Test 2: Train on the large and aug-
mented medium unlabeled
subset.

The augmentation process follows
the procedure described in Fig. 1.
Only the augmented medium dataset
is added to the initial large dataset.
Figure 2 shows reconstruction results
along 250 epochs. Given that some
of the plumes are much smaller than the full velocity map dimensions, we show the recon-
struction accuracy along epochs ε(θi) as the MAE in logarithmic scale and normalized with
respect to the velocity map dimensions to clearly depict our method’s effect in the predictions

ε(θi) = 10 log10

{
1

L̂MN

∑L̂−1
`=0 ‖m∗

` − m̂`(θi)‖1
}
, where θi corresponds to the set of hyperparam-

eters at the ith epoch, and L̂ corresponds to the size of the validation set. The network trained over
large plumes attains a reconstruction accuracy of ε ≈ −10.5. On the other hand, the network trained
over large and augmented medium unlabeled plumes obtain a better reconstruction accuracy of ap-
proximately −11.7. These results strengthen our observation regarding the information encapsulated
in the samples generated by the augmentation process: by including the forward modeling operation
in the process, physically-consistent data pairs are generated, allowing a better domain adaptation.
The use of unlabeled data shows how our proposed method is not limited to labeled data, which can
be difficult to obtain in real applications. We provide visualization of the inverted velocity maps
using both physics-based FWI and data-driven approaches and demonstrate its accuracy in Fig. 3.
Our network trained over the large dataset obtains a reasonably accurate estimate of the plume. Also,
the estimate obtained by our augmentation further refines the reconstruction shape and the plume
location. This example shows how iterative augmentation can improve the network output, which
reflects the potential of incorporating the physics-based forward model into the learning pipeline. An
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additional test and analysis of our inversion model robustness with respect to variant levels of noisy
seismic data is provided in our full paper [5].

5 Conclusion

We develop a physics-consistent data-driven seismic inversion method. We design a novel data
augmentation strategy that incorporates critical physics information and improves the representability
of the training set. We validate its performance to detect CO2 leakage. Compared with purely physics-
based and purely data-driven inversion methods, our physics-consistent data-driven inversion yields
higher accuracy and better generalization. More detail of our work can be found in the full paper [5].
Acknowledgements. This work was supported by the Center for Space and Earth Science at Los
Alamos National Laboratory (LANL) and by the Laboratory Directed Research and Development
program of LANL under project numbers of 20210542MFR and 20200061DR.

Broader Impact

Inverse problems, the inference of unknown or unobservable properties from measurements, have a
diverse range of scientific applications including materials science, medicine, and geoscience. The
solutions to scientific inverse problems play an important role in characterizing the complexity of
physics system and guiding future data acquisition. However, inverse problems are notoriously
formidable: ill-posed and computationally expensive. Our developed approach provides a mean
in exploiting machine learning in a way enhances, rather than replaces, traditional physics-based
inversion methods. The idea does not only limit itself only to our geophysics problems, but instead, it
can be potentially applied to much broader inverse problems.

References
[1] Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-learning tomography: The Leading Edge,

37, 58–66.
[2] Buscheck, T., K. Mansoor, X. Yang, H. Wainwright, and S. Carroll, 2019, Downhole pressure and chemical

monitoring for CO2 and brine leak detection in aquifers above a CO2 storage reservoir: Int. J. Greenhouse
Gas Control, 91.

[3] Farris, S., M. Araya-Polo, J. Jennings, B. Clapp, and B. Biondi, 2018, Tomography: a deep learning
vs full-waveform inversion comparison, in First EAGE Workshop on High Performance Computing for
Upstream in Latin America, European Association of Geoscientists & Engineers.

[4] Fichtner, A., 2010, Full seismic waveform modelling and inversion: Springer Science & Business Media.
[5] Gomez, R., J. Yang, Y. Lin, J. Theiler, and B. Wohlberg, 2020, Physics-consistent data-driven waveform

inversion with adaptive data augmentation: arXiv preprint (also accepted in IEEE Geoscience and Remote
Sensing Letters).

[6] Hu, W., Y. Jin, X. Wu, and J. Chen, 2019, Progressive transfer learning for low frequency data prediction in
full waveform inversion: arXiv preprint arXiv:1912.09944.

[7] Jordan, P., and J. Wagoner, 2017, Characterizing construction of existing wells to a CO2 storage target: The
Kimberlina site, California: Technical report, U.S. Department of Energy - Office of Fossil Energy.

[8] Kingma, D. P., and J. Ba, 2014, Adam: A method for stochastic optimization: arXiv preprint
arXiv:1412.6980.

[9] Lin, Y., and L. Huang, 2015, Acoustic- and elastic-waveform inversion using a modified total-variation
regularization scheme: Geophysical Journal International, 200, 489–502.

[10] Ovcharenko, O., V. Kazei, M. Kalita, D. Peter, and T. Alkhalifah, 2019, Deep learning for low-frequency
extrapolation from multioffset seismic data: Geophysics, 84, no. 6, 58–66.

[11] Virieux, J., A. Asnaashari, R. Brossier, L. Métivier, A. Ribodetti, and W. Zhou, 2014, Chapter 6: An
introduction to full waveform inversion, in Encyclopedia of Exploration Geophysics: SEG.

[12] Wu, Y., and Y. Lin, 2019, InversionNet: An efficient and accurate data-driven full waveform inversion:
IEEE Transactions on Computational Imaging, 6, 419–433.

[13] Yang, F., and J. Ma, 2019, Deep-learning inversion: A next-generation seismic velocity model building
method: Geophysics, 84, no. 4, R583–R599.

[14] Zhang, Z., and Y. Lin, 2020, Data-driven seismic waveform inversion: A study on the robustness and
generalization: IEEE Transactions on Geoscience and Remote Sensing, 58, no. 10, 6900–6913.

5


	Introduction
	Background
	Physics-Consistent Data-Driven Full-waveform Inversion
	Numerical Experiments
	Conclusion

