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TISE Experiments

Wave Functions

Ground State Energies • a) Unperturbed 
system

• b) Perturbed 
system A: a = 1,
& = 8

• c) Perturbed 
system B: a = 10,
& = 2
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Particle In a Box

Perturbed Particle In a Box

Potential: V + = , 0, 0 < + < a
∞, otherwise

Single particle quantum systems in 1 dimension.

Potential: V + = , &+, 0 < + < a
∞, otherwise

DNN Wave Function

Hamiltonian: 7 = − ℏ:
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We propose using DNN, in an end-to-end deep
learning approach, to directly model the wavefunction
ansatz in a variational optimization scheme for
approximating the ground state energies and wave
functions of quantum mechanical systems.

• Abstract vector in a complex Hilbert space   
• Access to the wave function of a physical system 

provides full knowledge of all dynamical quantities

Wave Functions Ψ

• Example: Spin states in a
complex 2 dimensional
Hilbert space

• Quantities of a physical systems that can be measured 
• Mathematically represented by Hermitian operators 
• Combination of position and momentum operators 

Observables

Introduction

Objective Function

• Incorporating physical constraints to DNN wave function
• Extending to high dimensional systems
• Exploring other orthonormal computational basis

• Energy operator
• Equal to the sum of the kinetic energy F and potential

energy G operators
• Describes a physical system in quantum theory

Time Independent Schrödinger Equation
(TISE)

• Hamiltonian operator, H
• Energy (real valued ), E 
• Eigenvalue problem

7 Ψ = E Ψ

7 = F+ G = −
ℏ;

2m
J;

J+;
+ V(x)

Hamiltonian

The expectation value of the Hamiltonian for an arbitrary state
|ΨOPQRS⟩ is greater than or equal to the ground state energy of
the system.

The Variational Principle

• Objective Function
• Approximate EUPVWXY ZORO[ and ΨUPVWXY ZORO[ by optimizing

DNN wavefunction to minimize E
• Works for finite and Infinite dimensional Hilbert Spaces 

• Applying Hamiltonian to DNN wave function ansatz
• Infinite dimensional Hilbert space
• Multidimensional Integrals in function decomposition

Challenges

Expectation value of Hamiltonian

ΨOPQRS 7 ΨOPQRS
ΨOPQRS ΨOPQRS

≥ EUPVWXY ZORO[

E =
Ψ 7 Ψ
Ψ Ψ

=
∑^,_ Ψ bQ bQ 7 ba ba Ψ

∑^ bQ Ψ ;

• Use DNN to model a wave function and output its value
• Use basis of a finite subspace as the computational basis.
• Decompose DNN wave function onto computational basis

using Riemann approximations and compute a matrix of
H using the basis

Our Approach
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The state of a quantum mechanical system is given by
a wave function. It obeys Schrödinger's equation and
the modulus square gives the probability of the
measurement of an observable at any given time.

Quantum Mechanical Systems

Example: Electron density for hydrogen wave
functions Ψ ; > d.;f

X<g . Results

Challenges and Future Work

• Example: Kinetic or angular momentum, energy, spin


