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Abstract

Astronomers require efficient automated detection and classification pipelines when
conducting large-scale surveys of the optical sky. Such pipelines are fundamentally
important as they permit rapid follow-up and analysis of those detections most
likely to be of scientific value. We present a deep learning framework based
on a convolutional neural network model known as MeerCRAB. It is designed to
filter out the so called “bogus” detections from true astrophysical sources in the
transient detection pipeline of the MeerLICHT telescope. Optical candidates are
described using a variety of 2D images and numerical features extracted from
those images. The relationship between the input images and the target classes is
unclear, since the ground truth is poorly defined and often the subject of debate.
This makes it difficult to determine which source of information should be used to
train a classification algorithm. To proceed we deployed variants of MeerCRAB that
employed different network architectures trained upon different combinations of
input images and different training set choices based on volunteer’s classification
labels. We found the deepest network worked best with an accuracy of 99.2%
and Matthews correlation coefficient (MCC) value of 0.984. The best model
is integrated in the MeerLICHT transient vetting pipeline, hence providing a
contextual classification of detected transients that allows researchers to select the
most promising candidates for their research goals.
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(a) MeerVETTING web-interface.
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(b) Thresholding method: removing noisy labels.

Figure 1: (a) MeerVETTING web-interface to label candidates as either real or bogus, based on three
images (NRD), (b) Thresholding method applied to label candidates based on the 10 volunteers’
labels. The x-axis represents thresholding criteria applied (atleast5 (T5) to atleast 10 (T10)). For
atleast 9 (T9), this indicates that 9 out of 10 volunteers have agreed on the labelling.

1 Introduction

Current large-scale survey telescopes such as the Skymapper [8], the MeerLICHT telescope [2] and
the Zwicky Transient Factory [1] are already generating a plethora of transient events. For these
surveys to be feasible, it is imperative that we automate the transient search process including the
separation of likely real transient events, from those “bogus” detections originating from sources that
are not of interest. Bogus detections may be caused by instrumental errors or by data processing errors.
In this paper, we present an application of deep learning to a new data set obtained at the MeerLICHT
telescope for the classification of “real versus bogus” (MeerCRAB). We deal pragmatically with the
problems raised during real-world application of deep learning in a domain where labels are of poor
quality and incomplete, reflecting gaps in our knowledge. With new telescopes coming on-line we
need a viable solution that can overcome these problems (or at least mitigate them) that meet our
operating constraints – auditability, runtime efficiency to name a few.

We constructed three models based on convolutional neural networks (CNN, [10]) and we employed
two techniques to label our data (i) thresholding that removes noisy labelling and (ii) Latent class
model, Llcm [4] that incorporates the labelling uncertainty in our model. In addition, the networks
can incorporate various inputs: new, reference, difference and significance images. These networks
are telescope agnostic in nature and are currently implemented in the MeerLICHT transient-vetting
pipeline to classify candidates in real time. Hence, MeerCRAB reduces the need for manual verification
by humans, which is an expensive and most likely, impossible process to conduct given the volumes
of data to be dealt with.

2 Data

MeerLICHT is an optical wide-field telescope that is operated robotically [2]. Each image captured by
this telescope begins as a matrix n×m in size. These images are downsampled by a data processing
pipeline producing “reduced” images that form the inputs to a classification model. There are four
distinct forms of image inputs to MeerCRAB – (i) the new (N) image which is the latest science image
fully reduced, (ii) the reference (R) image which is the first image of the field, (iii) the difference
(D) which is the residual after the new and reference image are subtracted from each other, (iv) the
significance (S) image which is constructed based on the difference image using ZOGY [12], but with
an additional noise model taken into account to calculate significances.

In a supervised context, the success of deep neural networks depends highly on the availability and
accessibility to high-quality labelled training data. In addition, the data set needs to be representative,
else machine learning (ML) algorithms tend to be biased towards the majority class [6; 7]. We
therefore construct a large representative training dataset (5000 candidates) for the Real-Bogus
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challenge by manually vetting a selection of transients, using a web-interface, known as MeerVETTING
(Figure. 1(a)). Each candidate is vetted by 10 volunteers, who are shown three images (N, R, D)
during vetting. Each volunteer’s ability to classify a particular candidate may vary according to the
class, images and criteria. Unfortunately, this leads to large training datasets that will almost always
contain examples with inaccurate labels. We therefore test the performance of the MeerCRAB models
by (i) removing noisy labels using a thresholding method, and (ii) including the entire dataset with
noisy labels based on Llcm.

2.1 Thresholding

We assign a probability P (Real) and P (Bogus) to each vetted candidate as follows:

P (Real) =
n (R)

n (T )
;P (Bogus) =

n (B)

n (T )
, (1)

where n (R) is the total number of vetters who classified a candidate as real, n (B) is the total number
of vetters who classified a candidate as bogus, n (T ) is the total number of vetters classifying a
particular candidate and in this case n (T ) = 10. The volunteer’s classification results are illustrated
in a bar plot in Figure 1(b). On the x-axis, for example “atleast 9” (T9) implies that all candidates with
P (Real) ≥ 0.9, are labelled as real or if P (Bogus) ≥ 0.9, they are labelled as bogus. Candidates
with P < 0.9 are considered as noisy labels and removed from the data.

2.2 Labelling data with Latent Class Model, Llcm

Latent class model is a statistical technique used to classify candidates into mutually exclusive, or
latent classes. It is mostly based on their pattern of answers on a set of categorical data. When
observed data in the form of a series of categorical responses, for example, individual-level voting
data as in the case of real-bogus classification, it is often an interesting analysis to identify and
characterize clusters of similar cases. In this paper, some confused sources2 were removed from
the data when using the thresholding method. However, it is useful for determining how the system
will perform in a real-world scenario. Therefore, confused examples will also be used during the
evaluation phase, and this is achieved using Llcm to assign them their most likely labels.

3 MEERCRAB Models

We employed a CNN as it has been proven by various studies to have excellent classification
performance [1; 3; 5]. In this work, we construct three CNN models: MeerCRAB1, MeerCRAB2, and
MeerCRAB3 as illustrated in Figure 2. During training, the binary cross-entropy loss function, Adam
optimizer [9] with a low learning rate (lr = 0.0002) and a batch-size of 64 were used. We then split
our data into 50% training, 25% validation and 25% testing. As input to the MeerCRAB models, we
cropped the images from centre to a size of (30× 30) pixels that were vetted by volunteers.

The best strategy for better generalisation of a ML model is to train with a large amount of data.
However, we simply do not have access to such large volumes of labelled data. Therefore, we apply
data augmentation techniques to create new labelled training samples at each training step, thus the
images are augmented by flipping randomly in a horizontal and/or vertical direction. Moreover, to
avoid any over-fitting during training, we employ an early stopping technique to stop the training
process if no further decrease in validation loss is observed for several epochs. The models are trained
for epochs varying from 50 to 150.

4 Experiments and results

In this paper, we investigated various scenarios for training and evaluating the pipeline. We analysed
the performance based on MeerCRAB1, MeerCRAB2 and MeerCRAB3. We also varied the number of
input images and we investigated the effect of noisy data labels.

Effects of noisy data labelling on performance: We used various thresholding criteria ‘atleast 8,
9, 10’ (T8, T9 & T10) to remove noisy labels. We also investigate the effect on the performance of

25 vetters labelled them as bogus and the other 5 as real.
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Figure 2: The three network architectures considered in this work: MeerCRAB1 (top), MeerCRAB2
(middle) and MeerCRAB3 (bottom). Real and bogus sources are represented by four images stacked
together (NRDS) to form the input of the networks, followed by convolutional layers, max-pooling,
dropout and dense layers. At the end, the network outputs a probability whether a candidate is either
real or bogus in a particular test set.

MeerCRAB models with the introduction of noisy labelling based on Llcm method. Our first analysis
involves comparing MeerCRAB3 model with NRD as input where the results are summarised in Table
1. We observe that as the threshold increased from T8 to T10, the accuracy of the model increases
from 0.988 to 0.998. However, when using Llcm method, we note a significant drop in accuracy
as deep networks tend to memorize training label noise, resulting in poorer model performance.
Therefore, it is necessary to have good labelling for CNN to work appropriately, thus removing noisy
labelling from the model shows a better model performances.

Input Images: We use different inputs independently to the networks: NRDS, NRD, NRS, NR, D, and
S, to see whether a competitive performance can be achieved with less or more input data. Focusing on
T9 and MeerCRAB3, we note that the NRD input yields the best performance model with an accuracy
of 99.2%. With only NR as input, we note that MeerCRAB3 yields a competitive performance and
indicates that a reduced set of images is sufficient for approaching the problems. However, with only
D or S as input, the classification performance is worse, thus indicating that information only from
the difference or significance imaging is not enough for CNN to solve the tasks.

Network architectures From Table 1, with T9 and NRD we note that MeerCRAB1 predicts an accu-
racy of 97.9%. With deeper networks (MeerCRAB2 and MeerCRAB3), we obtain a higher performance
with an accuracy of 98.6% & 99.2% respectively. However, how would one decide which network per-
forms best? In this case, we employ the McNemar statistical test [11] which is based on contingency
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MeerCRAB1 Right MeerCRAB1 Wrong

MeerCRAB2 Right 1065 15

MeerCRAB2 Wrong 7 8

MeerCRAB2 Right MeerCRAB2 Wrong

MeerCRAB3 Right 1078 7

MeerCRAB3 Wrong 2 8

MeerCRAB1 Right MeerCRAB1 Wrong

MeerCRAB3 Right 1069 16

MeerCRAB3 Wrong 3 7

Figure 3: The contigency tables based on the test set for the three models: MeerCRAB1 vs MeerCRAB2
(left), MeerCRAB2 vs MeerCRAB3 (middle), MeerCRAB1 vs MeerCRAB3 (right). We observe that
MeerCRAB3 is a better model compared to MeerCRAB1, having a lower misclassification rate.

tables as shown in Figure 3. We compute the p-value from a binomial distribution as the misclassified
sample size is relatively small (< 25). If the p-value is less than 0.05, we reject the null hypothesis
that both models perform equally well on the test set, else we accept the null hypothesis. The p-value
for MeerCRAB1 vs MeerCRAB2 is 0.134 and for MeerCRAB2 vs MeerCRAB3 is 0.180. For both cases,
their p-values are greater than 0.05. This implies that the models have equal performance. However,
when comparing MeerCRAB1 vs MeerCRAB3, the p-value is 0.004, which is less than 0.05. This
indicates one model is favored. MeerCRAB3 has less misclassified instances compared to MeerCRAB1
as shown in Figure 3(c), therefore, we conclude MeerCRAB3 is the best model architecture.

5 Summary

Being able to filter out bogus events with an automatic technique will enable the labeling of real events
saving human experts from going through a painstaking process. The proposal of a deep learning
framework (MeerCRAB) integrated in the MeerLICHT facility is a step forward in the automation and
improvement of the transient vetting process. In practice, by using MeerCRAB we can significantly
reduce the number of missed transients per night and this may have a great impact on detecting
and classifying the unknown unknowns of our universe. Our code is made publicly available at
https://github.com/Zafiirah13/meercrab.

Broader Impact

MeerCRAB is a first step for MeerLICHT to discover an unprecedented number of transients, expanding
the new era of big data in optical astronomy. With the streaming data coming from MeerLICHT,
the vast majority of astrophysical phenomena are challenging to classify efficiently and effectively.
Therefore, MeerCRAB will enable the rapid identification of promising astrophysical sources in timely-
manner. In addition, MeerCRAB can be adapted to be a system that disentangles interesting objects
from a noisy background. We have already implemented similar models in radio astronomy that
distinguish Single Pulses from Radio Frequency Interference for the MeerKAT telescope (FRBID:
Fast Radio Burst Intelligent Distinguisher). MeerCRAB is a flexible software, thus we were able
to easily modify it to integrate different images as its inputs and as result, achieved high levels of
performance when using it for radio astronomy images.

Given the performance of MeerCRAB on both optical and radio image sources in astronomy, the
method may have utility for those working in related areas, for instance, in pipeline monitoring
and oil leakage detection technologies. Pipelines are widely utilised to transport hydrocarbon fluids
over long distances. However, leaks in pipeline networks can result in serious human casualties,
financial loss, climate and ecological disasters. With the availability of enough training data taken
from drones at various locations and at several time-spans, MeerCRAB can be implemented to tackle
this challenging task. This will provide an exact location of leakage occurrences and will help to
monitor the problem quickly and efficiently.
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Appendix

Table 1: The results for various labelling methods are presented in terms of precision, recall, accuracy
and mathew correlation coefficient (MCC) values using NRD as input to the three models.

Methods of labelling Precision Recall Accuracy MCC
MeerCRAB1

Llcm 0.96 0.96 0.960 0.920
T8 0.98 0.98 0.980 0.958
T9 0.98 0.98 0.979 0.958

T10 0.99 0.99 0.991 0.983
MeerCRAB2

Llcm 0.97 0.97 0.967 0.936
T8 0.99 0.98 0.977 0.953
T9 0.99 0.99 0.986 0.973

T10 0.99 0.99 0.994 0.988
MeerCRAB3

Llcm 0.97 0.97 0.968 0.936
T8 0.99 0.99 0.988 0.976
T9 0.99 0.99 0.992 0.984
T10 1.00 1.00 0.998 0.995
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