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Abstract

Studying the dynamics of COVID-19 is of paramount importance to understanding
the efficiency of restrictive measures and develop strategies to defend against up-
coming contagion waves. In this work, we study the spread of COVID-19 using
a semi-supervised neural network and assuming a passive part of the population
remains isolated from the virus dynamics. We start with an unsupervised neural
network that learns solutions of differential equations for different modeling param-
eters and initial conditions. A supervised method then solves the inverse problem
by estimating the optimal conditions that generate functions to fit the data for those
infected by, recovered from, and deceased due to COVID-19. This semi-supervised
approach incorporates real data to determine the evolution of the spread, the passive
population, and the basic reproduction number for different countries.

1 Introduction

COVID-19 has had an enormous global impact, resulting in a broad spectrum of crises across
multiple sectors, including public health, social structure, economic stability, and access to education.
Countries have been affected at different times, and almost all have reacted by imposing strict
lockdown measures to contain the pandemic’s effects. Studying the evolution of these procedures is
vital to evaluating the effectiveness of the adopted measures, formulating new strategies to improve
the response for upcoming waves of contagion, and forecasting the virus’s spread to allow for policies
of early lockdown or re-opening. The spread of a virus is a time-dependent phenomenon that can
be described by differential equations (DEs). A fundamental approach used in epidemiological
modeling, which consists of a set of DEs, is the Susceptible-Infectious-Removed (SIR) dynamical
model [18] that describes how individuals in a population become infected and removed (recovered
or died) by a virus. Recent studies that focus on the COVID-19 pandemic propose analyses of the
disease dynamics based on the SIR model [1, 9] and its extensions [7, 8, 10, 12, 17, 19].

We introduce the novel application of a semi-supervised neural network (NN) to study the spread of
COVID-19. This method consists of unsupervised and supervised parts and is capable of solving
inverse problems formulated by DEs. We also propose an extension of the SIR model to include a
passive compartment P , which is assumed to be uninvolved in the spread of the pandemic (SIRP),
presenting a novel machine learning technique for solving inverse problems and improving disease
modeling. We first present our method and use it for studying synthetic data generated by the SIR
model. Then, we introduce the SIRP model and study the pandemic’s evolution by applying the semi-
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supervised approach to real data, capturing the populations infected and removed by COVID-19 in
Switzerland, Spain, and Italy. We conclude with a summary of the key ideas and the most significant
results presented in this study.

2 Methodology

We developed a semi-supervised method to determine the optimal parameters and initial conditions of
a specific DE system, yielding solutions that best fit a given dataset. The unsupervised part consists of
a data-free NN that is trained to discover solutions for a DE system in a high-dimensional parametric
space that consists of the modeling-parameters and initial conditions [6]. The loss function solely
depends on the network predictions providing an unsupervised learning method. The NN solutions
are given in a closed differentiable form [13, 11, 14]. Once a NN is optimized for a particular model
formed by DEs, and consideration of the differentiability of solutions, a supervised approach employs
a gradient descent optimization method to determine the model parameters and initial conditions
that best describe ground truth observations. Automatic differentiation [16] computes the derivatives
in gradient descent. An advantage of our approach over standard regression methods is that the
predictions respect any underlying constraints embedded in the DE system.

The first part of the proposed method is unsupervised where a feed-forward fully connected neural
network [11, 14] is employed to learn solutions of a DE system of the form:

dz

dt
= g (z) , with the initial condition, z(t = 0) = z0, (1)

where t denotes time, z = z(t, z0, θ) is a vector that contains the variables, z0 holds the initial values
for z, and θ includes the modeling parameters. The NN takes the inputs (t, z0, θ) and is trained in a
certain time range and over predefined intervals of z0 and θ (called bundles) [6]. The network returns
an output vector zNN of the same dimensions as the target solutions z. The learned solutions ẑ satisfy
the initial conditions identically by considering parametric solutions of the form:

ẑ = z0 + f(t) (zNN − z0) , (2)

where f(t) = 1− e−t [14]. The loss function used in the NN optimization is defined by Eq. (1) as:

L =

〈(
dẑ

dt
− g (ẑ)

)2
〉

t

, (3)

where 〈·〉t denotes averaging with respect the time. The auto-differentiation technique [16] is used
for the calculation of time derivatives. The proposed architecture is outlined by Fig. 1. Once the NN
is trained to provide solutions for the system of Eq. (1), it is used to develop a supervised pipeline for
the estimation of z0 and θ, leading to solutions that fit given observations denoted by z̃ = z̃(t). This
procedure is illustrated in blue in Fig. 1. Starting from random z0 and θ, a solution ẑ(t) is generated,
then a gradient descent optimizer adjusts z0 and θ in order to minimize the loss function:

Linv =

〈
(ẑ− z̃)

2

〉
t

. (4)

Figure 1: Semi-supervised neural network architecture. Red and blue indicate, respectively, the
unsupervised and supervised learning parts.

We first assessed the performance of the proposed method by studying synthetic data generated by
the SIR model. The SIR model is a system of non-linear DEs given by:

dS

dt
= −βSI

N
,

dI

dt
=
βSI

N
− γI, dR

dt
= γI, (5)
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where N is the time-invariant total population, N = S + I + R. We use S = S(t), I = I(t),
R = R(t) to keep the notation elegant. The flow from S to I is regulated by the infection rate
parameter β, while the flow from I toR is determined by the recovery rate parameter γ. An important
assumption in the SIR model is that the population in R does not flow either to S or to I . A high-level
description of the dynamics of epidemic phenomena is given by basic reproduction number R0

that estimates how many new contagions are generated by a single infected person in a population
composed only by susceptible people [5, 18]. In the context of the SIR model, we read R0 = β/γ.

For the SIR model, θ = (β, γ), ẑ = (Ŝ, Î, R̂), and z0 = (S0, I0, R0), where S0 = N − I0 − R0,
subsequently, z0 is determined by I0 and R0. We work with relative values of ẑ and z0 that represent
a probability of a compartment. This is achieved by dividing all the compartments by N , yielding a
normalized total population equal to one and thus, the constraint S+I+R = 1 dictates the quantities
z0 and ẑ to be bounded between 0 and 1. We use a softmax activation in the output layer of the NN
forcing zNN to take values in [0, 1]. Considering that f(t) ∈ [0, 1], Eq. (2) yields ẑ ∈ [0, 1], which is
the accepted range. According to Eq. (3), the loss function for the SIR model of Eqs. (5) reads:

L =

〈(
dŜ

dt
+ βŜÎ

)2

+

(
dÎ

dt
− βŜÎ + γÎ

)2

+

(
dR̂

dt
− γÎ

)2〉
t

. (6)

In the unsupervised training process, 2 · 103 equally-spaced time points are sampled from the range
[0, 20]. The points are perturbed in each iteration, improving the NN predictability [14]. The network
architecture is composed by 4 hidden layers with 50 neurons per hidden layer. For the training, we
use Adam optimizer with learning rate 8 · 10−4, and the network is trained for 2 · 104 epochs. In
the supervised optimization part of our method we split the training set in 4 mini-batches. We also
use Adam optimizer with learning rate 10−3, and the model is trained for 103 epochs. For each
experiment, we have trained 10 networks and chose the model with the lowest MSE.

We consider a total population N = 107 and the normalized bundles are: I0 = [0.2, 0.4], R0 =
[0.1, 0.3], β = [0.4, 0.8], and γ = [0.3, 0.7]. The loss function (6) during the training is represented
by the left graph in Fig. 2, where softmax (green) and identity activation functions (red) are used in
the output layer. We observe that lower loss value is obtained when softmax activation is used. We
implemented the proposed NN in PyTorch [16] and published the code in github 1.

We employed the semi-supervised pipeline to explore two datasets generated by the SIR model to
be considered as the ground truth; these sets are denoted as z̃ = (S̃, Ĩ, R̃). The aim is to determine
which z0 and θ generate the z̃. Indeed, minimizing Eq. (4) yields the z0 and θ and the associated
SIR solutions that fit z̃. The middle and right graphs in Fig. 2 present the results of the supervised
pipeline. The solid lines show the predictions and the points indicate z̃. Specifically, we sample 20
equally-spaced points from SIR solutions where 16 points (green points) are used for training, and
4 points (red) are used for validation. Only the infected curves are displayed for simplicity, but we
obtained equally accurate predictions for the other compartments. We point out that the predicted
fitting curves ensure the conservation of the total population since Eqs. (5) are embedded in the
NN architecture, establishing this as an epidemiology-informed model. We proceed by applying the
method in a realistic model that is able to describe real data for COVID-19 dynamics.
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Figure 2: Left: Loss function during the training with softmax (green) and identity (red) activation
functions in the last layer. The rapid oscillations appear due to the random perturbation of the training
points and are visually amplified by the logarithmic scale of the y-axis. Middle and right: Predictions
(solid lines) of the infected population for two different experiments. Green and red points indicate
the training and validation sets.

1https://github.com/alessandropaticchio/semi_supervised_nn_for_covid19
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3 COVID-19: Real data

The complexity of the virus spread and the partial quality of data make the simple SIR model
incapable of capturing the dynamics of COVID-19. Previous studies used the SIR model to fit
only the accumulated infected population [2, 9, 15], while other, more complex, models have been
proposed to fit both infected and removed populations [7], we present a simple extension of the SIR
model, called SIRP, which can closely fit the data for infected and removed individuals. The model
assumes a passive compartment that is not involved in the pandemics’ whole dynamics. We examined
the effectiveness of the SIRP model and the semi-supervised method by fitting data obtained during
the COVID-19 pandemic for three countries: Switzerland, Spain, and Italy [3].

The passive population does not interact with the active compartments S, I, R and thus, P is not
considered as susceptible and remains constant in time. Mathematically speaking, we introduce the
fourth equation dP/dt = 0, with solution P (t) = P0, where P0 is the initial passive population. The
total population in the SIRP model reads N = S + I +R+ P . We modify the network architecture
used to solve Eqs. (5), supplementing an additional input P0, resulting in the loss function:

L =

〈(
dŜ

dt
+ βŜÎ

)2

+

(
dÎ

dt
− βŜÎ + γÎ

)2

+

(
dR̂

dt
− γÎ

)2

+

(
dP̂

dt

)2〉
t

. (7)

Although the model parameters can be time-dependent, in specific periods such as lockdown they
can be considered constants [4]. We therefore trained our NN that in the lockdown period it would
assume constant modeling parameters. Additionally, it has been reported that the real number of
I and R is about ten times larger than what data show. This is due to the pandemic’s early stage,
where testing was not accurate, and samples were not enough to get accurate statistics. Subsequently,
the data obtained by [3] are multiplied by a factor of 10. Data give the I0 and R0 and are not
therefore determined through the pipeline. The optimization process is employed to determine the
parameters β, γ, and the conditions S0 and P0. All the compartments have been normalized for
the total population of N ' 8.5 · 106 for Switzerland, N ' 4.7 · 107 for Spain, and N ' 6 · 107
for Italy. For these experiments, the training set is split into 10 mini-batches during the supervised
optimization.

For each country, we employ and train a different network to learn the solutions of the SIRP system.
For the training of each model, we define the bundles on the knowledge of the initial conditions
(given by data) and on the intuition about the regions of the range where the real parameters lied.
Although I0 and R0 are provided by the data, we did not fix them in the unsupervised part. We have
empirically observed that the network generalizes better when it is train being trained on a bundle
of initial conditions than fixed values. Table 3 defines the training bundles used to study the three
countries:

I0 R0 P0 β γ
Switzerland [0.01, 0.02] [0.001, 0.006] [0.9, 0.97] [0.7, 0.9] [0.15, 0.3]

Spain [0.01, 0.02] [0.004, 0.009] [0.9, 0.97] [0.4, 0.6] [0.1, 0.2]
Italy [0.01, 0.02] [0.001, 0.006] [0.9, 0.97] [0.4, 0.6] [0.1, 0.2]

Figure 3 presents real data (color points) and predictions (solid lines) for infected (upper row) and
removed (lower row) populations. The left column outlines Switzerland’s results, the middle accounts
for Spain, and the right column represents Italy. We consider training (green) and validation (red)
datasets sampled before the end of lockdown, which occurred on April 27th in Switzerland, and on
May 4th in Spain and Italy. The training set consists of the first 80% of the data, while the last 20%
are used for validation. The data after the lockdown period (orange) are used to evaluate our method’s
long-term predictability and not involved in any part of the optimization process. We observe that
Italy has been the most impacted country, among the ones considered, reaching R0 = 4.7 with a
significant portion of the population, P = 96%, in the passive state. Spain follows with R0 = 3.3
and P = 95%. Switzerland has also P = 96%, with the smallest R0, resulting in R0 = 2.7.
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Figure 3: Infected and removed populations for Switzerland (left column), Spain (middle), Italy
(right). Points indicate data, solid lines denote predictions, dashed lines show the end of lockdown.

4 Conclusion

We introduced a semi-supervised neural network to solve inverse problems which are formulated by
DEs. The method consists of unsupervised and supervised parts. An unsupervised network solves
DEs over a range of parameters and initial conditions. A supervised approach incorporates data and
uses a gradient descent algorithm to determine the optimal initial conditions and modeling parameters
that best fit a given dataset considering a certain model of DEs. We extended the SIR model to
include a passive compartment, and showed that the new model, called SIRP, captures the dynamics
of COVID-19 spread. We applied the proposed semi-supervised method on real data to study the
COVID-19 spread in Switzerland, Spain, and Italy.
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5 Broader Impact

The semi-supervised method and the analysis presented in this manuscript contribute to the study
of COVID-19. Our method was used to solve the inverse problem for existing and new established
disease models by incorporating real data. We believe that our results can be further leveraged for
the study of virus spread, especially with rigorous data collection. As countries have significantly
improved their testing capacity and tracking strategies, data collection now depicts a more realistic
scenario, specifically in regards to the early phases of the pandemic. However, while this work presents
an elegant and simple method for improving on epidemiological models, it also has applications
for applied sciences where DEs play an important role. It could be useful for elaborating problems
such as designing material and metamaterials with specific optical properties which consist of an
inverse problem. We do not foresee any way that our study can yield any negative outcome regarding
ethical aspects. We believe that our work can help in defending upcoming waves of COVID-19 and
consequently, retain the balance in the society and improve the daily living conditions.
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