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Hierarchical clusterings in particle physics

Jets — sprays of hadronic particles — are the most common
object at the Large Hadron Collider experiments

They are produced when a quark or gluon repeatedly radiates
more quarks and gluons. These repeated binary splittings
result in a tree structure. We have reliable simulators for this
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A key problem for many LHC analyses is to invert this
generative process, a hierarchical clustering problem: given Observed particles
observed particles (the leaves of the binary tree), the goal is

to infer the tree structure that maximizes the likelihood

Unfortunately, the number of clusterings grows as (2N — 3)!!
with the number of leaves N: we can’t search exhaustively

Particle physicists usually resort to greedy algorithms based
on heuristics

Generative process

Particle clusterings as a Markov Decision Process

* Each state is a set of particles: the initial
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1 state is the set of leat nodes, other states
represent partial clusterings
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* The reward is the log likelihood of the
corresponding binary splitting

e The state transition is deterministic and

clusters the two selected particles,
following energy and momentum
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* The MDP is episodic and terminates when a
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Algorithms

Any off-the-shelf RL agent can now solve the hierarchical clustering problem in particle physics

We adapt Monte-Carlo Tree Search (MCTS) guided by a neural policy (similar to AlphaZero),
which explores the search tree of possible clusterings by choosing actions that maximize
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We also explore Behavioral Cloning (BC), training a policy to mimic the ground-truth trees in
simulation data

As baselines, we use a greedy algorithm, beam search, and a random policy. For small number of
leaves we also compare to the exact maximum likelihood tree, which we compute with the
algorithm proposed in Greenberg et al, 2002.11661

Experiments

* We test these algorithms on data from Ginkgo, a toy generative model with a tractable likelihood

* MCTS produces higher-quality clusterings than the baselines, though it requires more resources
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