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Abstract

Galaxies can be described by features of their optical spectra such as oxygen emis-
sion lines, or morphological features such as spiral arms. Although spectroscopy
provides a rich description of the physical processes that govern galaxy evolution,
spectroscopic data are observationally expensive to obtain. For the first time, we
are able to robustly predict galaxy spectra directly from broad-band imaging. We
present a powerful new approach using a hybrid convolutional neural network with
deconvolution instead of batch normalization; this hybrid CNN outperforms other
models in our tests. The learned mapping between galaxy imaging and spectra will
be transformative for future wide-field surveys, such as with the Vera C. Rubin Ob-
servatory and Nancy Grace Roman Space Telescope, by multiplying the scientific
returns for spectroscopically-limited galaxy samples.

1 Introduction

Galaxies are shaped by the physics of their stars, gas, dust, central supermassive black hole, and
dark matter. Our understanding of galaxy formation and evolution hinges on observations of these
physical processes, such as the formation of new stars from dense gas clouds, or spectacular mergers
between gas-laden massive galaxies. Spectroscopic observations are necessary for characterizing the
stellar populations and interstellar medium of galaxies, e.g., by determining elemental abundances,
ionizination state, gas temperature and density, dust properties, and much more [3].

Modern astronomical survey telescopes can quickly scan the sky and capture deep images of galaxies
in a few broad-band filters. While efficient imaging is transforming our view of the Universe,
spectroscopic follow-up for individual targets is prohibitively expensive: spectroscopy requires
∼ 103-fold the observation time compared to imaging and cannot be parallelized as easily. However,
optical-wavelength spectroscopy is crucial for investigating the detailed interstellar contents of
galaxies. Future imaging-only surveys such as the Legacy Survey of Space and Time (LSST) and
those with the Nancy Grace Roman Space Telescope (RST) will be spectroscopically limited, and
their scientific legacies will hinge on how well we can maximize information from the image domain.

Fortunately, deep learning can bridge the gap between prohibitively costly spectroscopy and plentiful
photometric imaging. Spectra can be thought of the labels that are expensive to attain against the
cheaper images. Spectroscopic quantities such as galaxies’ elemental abundances or gas/stellar mass
ratios can already be estimated directly from optical imaging [9,10].
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Figure 1: Randomly selected examples of PanSTARRS grizy image inputs and reconstructed galaxy
spectrum outputs. VAE-decoded targets and predictions are shown in black and red, respectively.

In this work, we predict galaxy spectra solely from color images. Specifically, we train a deep
convolutional neural network (CNN) to map five-channel Pan-STARRS image cutouts of galaxies
onto latent space representations of their SDSS spectra. We successfully reconstruct observed galaxy
spectra directly from images. Examples of the galaxy image inputs and spectra outputs from our
model are shown in Figure 1. Our method is broadly applicable in astronomy and can be used
for generating predictions, pre-selecting interesting candidates for spectroscopy, and interpreting
morphological connections to spectral features. The code is available online at https://github.
com/jwuphysics/predicting-spectra-from-images.

2 Method

In §2.1, we summarize a variational autoencoder (VAE) method for reconstructing a galaxy’s optical
spectrum from six latent variables. In §2.2, we describe Pan-STARRS 1 grizy (five-band) galaxy
image cutouts that serve as CNN inputs. In §2.3, we train a CNN to predict these latent variables,
and compare traditional CNN architectures against recently proposed models, which use deconvo-
lution layers for feature normalization instead of batch normalization (batchnorm). A schematic
representation of the method is shown in Figure 2.

2.1 Latent space targets

Following Portillo et al. [8], we use a catalog of 64,000 objects that have been targeted by Sloan
Digital Sky Survey (SDSS) fiber spectroscopy, the majority of which are representative galaxies
from the SDSS main galaxy sample. Their optical spectra are shifted to a common velocity frame,
normalized, and re-sampled onto a grid of 1000 elements. After quasars and other objects are
removed, the remaining catalog is split using 80% for training and 20% for validation.

We employ a trained VAE to represent these optical-wavelength spectra using six latent variables,
which correspond to star formation properties, emission-line ratios, post-starburst state, nuclear
activity, and other global galaxy properties [8]. VAEs are composed of an encoder portion, which
maps galaxy spectra to the latent space, and a decoder, which performs the inverse mapping from
latent variables to spectra. Other works have used principal components analysis (PCA) or non-
negative matrix factorization (NMF) for dimensionality reduction, but VAEs are better at representing
complex spectral features and non-linear connections between features. Moreover, VAEs map these
features onto a continuous latent space, which ensures that reconstructed galaxy spectra can smoothly
interpolate between examples.
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Figure 2: A schematic of our methodology. A pretrained VAE maps SDSS spectra to six latent
variables, which we use as training targets (upper). We optimize a CNN to estimate the latent variables
from grizy galaxy images (lower). Our best model comprises a deconvolution stem, resnet-like CNN
body, and fully-connected layer head. While the loss function compares targets and predictions in the
six-dimensional latent space, we show examples of the decoded spectra for visual comparison.

2.2 Galaxy image cutouts

We have obtained images of galaxies in five broad-band filters (grizy) from Data Release 2 of the
Pan-STARRS 1 survey (https://panstarrs.stsci.edu/). The 224 × 224 image cutouts are
delivered in FITS format with an angular scale of 0.25′′ pixel−1. We augment the data using D4

dihedral group transformations. Most images have other astronomical objects in them, which may
convey details about the galaxy environment (or inject irrelevant information about background or
foreground sources). Although a small number of cutouts have imaging artifacts, we do not attempt
to remove them in this work.

2.3 Network deconvolution

CNNs are supervised machine learning algorithms that can encapsulate detailed representations
of images. In recent years, CNNs have become widely used for astronomical classification and
multivariate regression tasks, in addition to other computer vision problems [1,7]. A recently
proposed architecture modification introduces deconvolution layers [11], which remove pixel-wise
and channel-wise correlations from input features. Network deconvolution allows for efficient
optimization and sparse representation via convolutional kernels.

3 Results

3.1 Experiments

We compare CNN models with different feature normalization methods. The base architecture is an
18-layer residual neural network (resnet) modified with several enhancements, including self-attention
layers, Mish activation functions, and a modified stem comprising only 3× 3 convolutions. It has
previously been shown that these modifications improve the commonly used 18-layer resnet for
astronomical regression and classification tasks [10]. We test models containing the usual batchnorm
layers (xresnet18), deconvolution in lieu of batchnorm throughout the model (xresnet18-deconv),
and deconvolution in the CNN stem and batchnorm in the body (xresnet18-hybrid). We also test
a baseline model composed of three convolution layers + batchnorm (with 32, 32, and 64 filters),
with ReLU activations, followed by a fully connected layer (simple-cnn), and a baseline model with
deconvolution layers (simple-deconv).
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Table 1: Experiments: CNNs with batchnorm and deconvolution

Model Parameters MSE Loss

10 epochs 50 epochs

xresnet18-hybrid 6.73M 0.506 0.474
xresnet18 6.73M 0.528 0.487
xresnet18-deconv 6.73M 0.541 0.577

simple-cnn 29.7k 0.783 -
simple-deconv 29.6k 0.678 -

We optimize the CNN by minimizing the mean squared error (MSE) between latent space predictions
and targets. Because the VAE is able to capture physically important correlations between spectral
features, MSE in the latent space is a desirable similarity metric compared to, e.g., Euclidean distance
between decoded spectra. Learning rates are scheduled according to the Fast.ai one-cycle defaults [2],
with a maximum learning rate of 0.03 (except xresnet18-deconv, for which we find an optimal value of
0.003). We set batch size to 128 and use a combined RAdam [4] and LookAhead [12] optimizer with
weight decay of 0.01. All CNNs are initialized with Kaiming initialization. These hyperparameter
choices have been shown to produce excellent optimization results for xresnet models [10]. In Table 1,
we report the validation loss after 10 (all models) and 50 training epochs (xresnet18-like models).
Because latent variables are distributed according to a multivariate Gaussian with unity variance, we
can achieve a baseline MSE loss of 1 by always predicting the mean latent vector.

3.2 Comparing network deconvolution against batch normalization

The xresnet18-hybrid model performs best in our experiments, implying that deconvolution is most
useful in the first few layers of a CNN. We also find that the xresnet18 with batchnorm outperforms
the variant with deconvolution throughout (xresnet18-deconv). As expected, deeper networks strongly
improve the loss relative to simple baseline models, even with a short training duration.

These experiments confirm that network deconvolution promotes efficient optimization. After 50
epochs, the xresnet18-deconv suffers from heavy overfitting, whereas the xresnet18 and xresnet18-
hybrid maintain robust performance. Overfitting likely occurs because galaxies have relatively simple
structures that can be represented in a small number of convolution + deconvolution layer pairs.
We note that our hybrid model may not perform well on more complex objects in the ImageNet or
Cityscapes data sets, which may require deep CNNs with additional deconvolution layers [11].

4 Discussion

For the first time, we are able to predict a galaxy’s spectrum directly from imaging. We posit that
the hybrid approach of using deconvolution plus convolution layers in the stem and convolution
plus batchnorm layers throughout the rest of the neural network encourages the model to represent
images sparsely with independent low-level features, while permitting the subsequent layers to learn
redundant features necessary for expressing symmetries in the data, such as rotation, translation,
and scale equivariance. Our hybrid model can be useful in other disciplines that leverage computer
vision, and may be particularly valuable for highly correlated input data (e.g., jet identification in
quark-gluon plasma, or remote sensing with interferometric aperture synthesis).

The robust mapping between galaxy images and spectra implies that the appearance of a galaxy is
a strong prior on its spectrum. Since the VAE ensures that images are projected onto a smoothly
varying low-dimensional latent space, we can explicitly estimate these priors by using Bayesian
neural networks or Monte Carlo dropout in the head of our neural networks. These image-domain
priors will be critical for selecting galaxies with particular spectral features in targeted follow-up
studies. It is important to note that our understanding of astronomy is often challenged and advanced
by discovery of rare phenomena. For this reason, our deep learning approach will also be useful for
identifying new failure modes, e.g., galaxies which have aberrant spectra given their morphology,
and for interpreting the physical connections between galaxy imaging and spectra [5,10].
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Broader Impact

Let us consider the negatives first. Computer vision, empowered by deep learning, has led to harmful
outcomes in warfare and mass surveillance, and has propagated or reinforced deleterious biases in
medicine and image recognition. Marginalized communities are disproportionately impacted, and our
work may contribute to these disparities. However, advancements in analyzing astronomical data may
not translate to similar gains (and thus, potential for abuse) in other applications, particularly because
the information in galaxy images is fundamentally different from the contents of terrestrial images.
In terms of positive broader impacts, our hybrid CNN architecture results in improved optimization,
which is helpful for reducing the deep learning carbon footprint. By predicting priors on spectra from
existing galaxy images, our method can promote more efficient use of telescope time. Finally, we
believe that our work on open data sets encourages development of community tools and facilitates
accessible science. There is strong evidence that robust scientific archives increase accessibility,
which benefits junior, under-resourced, and diverse researchers from a broader set of institutions [6].
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