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Abstract

This work applies recent advances in simulation-based inference to probe dark
matter substructures in the Milky Way halo. By simulating the stellar density varia-
tions caused by subhalo impacts on stellar streams, and tying those to the WDM
thermal relic mass, the technique allows us to efficiently compute preliminary, and
statistically diagnosed constraints on the dark matter particle mass. Using existing
GD-1 data, we find that the proposed approach has to potential to constrain the
WDM mass above 15 keV, provided that simulator systematics can be controlled.

1 Introduction and cosmological context

Cold Dark Matter (CDM) models [1; 2] predict a hierarchical collapse in which large haloes form
through the merging of smaller dark matter clumps [3; 4; 5]. This process is driven by CDM’s scale-
free halo mass function [6; 7] and depends on the initial conditions of the matter power spectrum,
which in turn anticipates the existence of dark matter haloes down to 10−4 M� (solar masses) [8].
Warm Dark Matter (WDM) models [9; 10; 11] on the other hand, in which the dark matter particle is
much lighter, influence structure formation down to the scale of dwarf galaxies. While at large scales
the collapse in WDM is hierarchical as well, it becomes strongly suppressed below 109 M�, where
the non-negligible velocity dispersion of dark matter particles prevents haloes to form and smooths the
density field instead [12]. The discrepancies between CDM and WDM at these smaller scales provide
a powerful test bed to examine the nature of the dark matter particle. Perturbations in the stellar
density of cold globular cluster streams [13; 14; 15; 16; 17; 18] caused by gravitational interactions
with (small-scale) dark matter substructure [19; 20; 21; 22] in the Milky Way halo make streams an
ideal probe to characterize the dark matter particle. However, such perturbations are also attributable
to interactions with baryonic structures in our Galaxy, such as the bar, spiral arms and the galactic
population of the Giant Molecular Clouds. It is therefore crucial to study stream systems sufficiently
distant from these baryonic structures, such as GD-1, to confidently detect subhalo impacts [23].

While forward modeling these complex interactions is relatively straightforward, the simulation
model does not easily lend itself to statistical inference; the computation of the likelihood involves
solving an intractable inverse problem which rests on the integration of all stochastic execution paths
implicitly defined by computer code. Despite the intractability, it remains however possible to infer
the underlying probabilities by relying on likelihood-free approximations. This approach is generally
referred to as likelihood-free or simulation-based inference [24]. Previous analyses [13; 14] relied
Approximate Bayesian Computation (ABC) [25] to constrain the thermal relic mass of the dark matter
particle by manually crafting a summary statistic based on the (partial) power spectrum of a streams
stellar density variations. However, ABC is only exact whenever the summary statistic is sufficient
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Figure 1: Graphical representation of the inference procedure after training the ratio estimator (neural
network). The ratio estimator accepts a target parameter ϑ and an observable x as inputs, which are
subsequently used to approximate the likelihood-to-evidence ratio r̂(x|ϑ). The discriminator output
d(ϑ, x) — the sigmoidal projection σ(·) of log r̂(x|ϑ) — is only used during training.

and the distance function chosen to express the similarity between observed and simulated data tends
to 0, which in practice is never achievable. This work proposes to solve the intractability of the
likelihood by learning an amortized mapping from target or model parameters ϑ and observables x
to posterior densities by solving a tractable minimization problem. The learned mapping has the
potential to increase the statistical power of an analysis since the procedure automatically learns an
internal representation of the data. To support the reproducability of this work, we provide all code1.
Every result is annotated with , which links to the code used to generate it.

2 Posterior inference through density ratio estimation

In this work we jointly infer target parameters ϑ which include the WDM thermal relic mass mWDM

and the stream age tage. Given the Bayesian perspective of this analysis, we define the priors over
the WDM mass mwdm and stream age tage as uniform(1, 50) keV and uniform(3, 7) billion years
(Gyr) respectively. The upper bound corresponds to a half-mode mass of ∼ 4× 104 M�, whereas
the prior over the stream age is based on the stream length and width. The length of the stream
and the associated velocity dispersion indicate a stream age of at least 3.4 Gyr [26]. However, the
width of some regions in GD-1 are quite thin, which is indicative of a low velocity dispersion. A
possible explanation for this is that the stream is in fact older, but that the thicker regions are formed
by encounters with dark matter or baryonic structures. Following this argument, and using the stream
thickness of the thinnest regions, the upper limit is estimated to be about 7 Gyr [14]. Observables
x encapsulate the (normalized) stellar density of mock streams — produced by the simulation or
forward model — and the observed GD-1 normalized stellar density.

The Bayesian paradigm finds model parameters compatible with observation by computing the
posterior p(ϑ|x). Evaluating Bayes’ rule in our setting is not possible as the likelihood p(x|ϑ) is
per definition intractable. To enable the tractable evaluation of the posterior, we have to rely on
likelihood-free surrogates for key components in Bayes’ rule. Note that Bayes’ rule can be factorized
into the product of the tractable prior probability and the likelihood-to-evidence ratio r(x|ϑ):

p(ϑ|x) = p(ϑ)
p(x|ϑ)

p(x)
= p(ϑ)

p(ϑ, x)

p(ϑ)p(x)
= p(ϑ)r(x|ϑ). (1)

Hermans et al. [27] show that an amortized estimator r̂(x|ϑ) of the intractable likelihood-to-evidence
ratio can be obtained by training a discriminator d(ϑ, x) with inputs ϑ and x, to distinguish between
samples from the joint p(ϑ, x) with class label 1 and samples from the product of marginals p(ϑ)p(x)
with class label 0 using a discriminative criterion such as the binary cross entropy. Whenever the
training criterion is minimized, the authors theoretically demonstrate that the optimal discriminator
d(ϑ, x) models the Bayes-optimal decision function

d(ϑ, x) =
p(ϑ, x)

p(ϑ, x) + p(ϑ)p(x)
. (2)

1github.com/JoeriHermans/constraining-dark-matter-with-stellar-streams-and-ml
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Figure 2: The columns show, from left to right, the observable, the approximate ABC posterior and
our method respectively. The red cross indicates the groundtruth.

Subsequently, given a model parameter ϑ and an observable x, we can use the discriminator as a
density ratio estimator to compute the likelihood-to-evidence ratio

r(x|ϑ) =
1− d(ϑ, x)

d(ϑ, x)
=

p(ϑ, x)

p(ϑ)p(x)
=
p(x|ϑ)

p(x)
. (3)

The posterior probability density can be approximated for arbitrary ϑ and x by computing
log p(ϑ|x) ≈ log p(ϑ) + log r̂(x|ϑ), provided that ϑ and x are supported by the product of marginals
p(ϑ)p(x). The ratio estimator can likewise be used to compute a credible region (CR) at a desired
level of uncertainty α by constructing a region Θ which satisfies

∫
Θ
p(ϑ)r(x|ϑ) dϑ = 1− α. Since

many such regions Θ exist, we select the highest posterior density region, which is the smallest CR.

3 Experiments and results

Simulations 10 million pairs (ϑ, x) ∼ p(ϑ, x) are drawn from the simulation model for training,
and 100,000 for testing. The simulations in the training dataset are reused in our ABC analyses.

Ratio estimator training The ratio estimators use SELU [28] activations and were trained using the
ADAMW [29] optimizer for 50 epochs with a batch-size of 4096. We found that larger batch-sizes, for
our setting, generalized better. This work considers a RESNET-50 [30] architecture with 1 dimensional
convolutions without dilations. Because our methodology treats ϑ as an input feature, we cannot
easily condition the convolutional layers of the RESNET-based architectures on ϑ. This would require
conditional convolutions [31] or hypernetworks [32] to generate specialized kernels for a given ϑ. To
retain the simplicity of our architecture, we inject the dependency on ϑ in the fully connected trunk.

Approximate Bayesian Computation Our experimental trials with ABC consider s(x) = V [x/xo]
as a summary statistic, where xo is the observable of interest. Given that every observable has a fixed
number of bins, we can divide the synthetic observable x by the observable of interest xo. Ideally, if
the observables match perfectly, then the variance of the stellar density ratios is 0.

3.1 Statistical quality

Before making any scientific conclusion, it is crucial to verify the result of the involved statistical
computation. This is especially challenging in the likelihood-free setting because the likelihood
model is per definition intractable. The amortization of the ratio estimators enables us to quickly
approximate the posterior of any observable x supported by the marginal model p(x). It is therefore
computationally viable to assess the quality of the approximation by determining whether the
empirical coverage probability corresponds to the desired confidence level. In every trial, we evaluate
the interval construction on 10,000 unseen observables. This is repeated 10 times to build up a robust
statistic. The empirical coverage probability of a ratio estimator is therefore based on approximately
100,000 unseen observables in total. Although credible regions do not necessarily have a frequentist
interpretation, they closely approximate the nominal coverage probability. All architectures exhibit
similar performance, the RESNET-50 architecture yields 0.675±0.006, 0.944±0.002, 0.996±0.001
for the confidence levels 0.68, 0.95 and 0.997 respectively . The bias of the ratio estimator is
probed by assessing the convergence of the mode towards the nominal target parameters for 1000
independent and identically distributed observables. Figure 3 demonstrates a single trial.
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Figure 3: Demonstration of the bias probe. The figures show, from left to right, the posteriors for 1,
10, 100 and 1000 independent and identically distributed mock GD-1 observables. As the number of
observables increases, the posteriors are becoming increasingly more tight around the nominal value.
This indicates that the posteriors do not, in expectation, introduce signficant bias.

3.2 Direct comparison against ABC

We find that the structure of the posteriors are, for most mock simulations, in strong agreement.
However, we observe that in some cases our ABC results depend strongly on the adopted summary
statistics. This highlights the difficulty in manually constructing an effective summary statistic for
high-dimensional data, while this aspect is completely automated in our approach. Diagnostics
based on (approximate) posterior samples exist [33], but are not computationally viable because the
posteriors have to be numerically approximated for every test-observable. Our method does not suffer
from this issue, because the estimation of the posterior density is amortized.

3.3 Preliminary constraints on mWDM using data on GD-1

We compute preliminary constraints on mWDM based on the observed stellar density along the GD-1
stream which was obtained using Gaia proper motions [34; 35] and Pan-STARRS photometry [36]. We
stress that our simulation model does not account for baryonic effects, disturbances caused by
massive (> 109 M�) subhalos, and effects induced by variations in the Milky Way potential.
The posteriors and corresponding credible regions are shown in Figure 4. In this context, all
independent analyses have a strong preference for CDM over WDM. After marginalizing the stream
age, the proposed methodology yields mWDM ≥ 17.5 keV (95% CR) and mWDM ≥ 10.5 keV (99.7%
CR). Assuming the posterior approximated by ABC is exact, we find mWDM ≥ 10.2 keV (95% CR)
and mWDM ≥ 5.0 keV (99.7% CR). Our results are promising and indicate that with the proposed
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Figure 4: Posteriors based on the observed stellar density variations of GD-1. The figure shows, from
left to right, our method and ABC respectively. The constraints are based on credible regions. All
posteriors indicate a preference for CDM over WDM within the assumed simulation model.
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method we could effectively exclude the sterile neutrino [10; 37; 38; 39; 40] as a possible candidate
for the dark matter particle, provided simulator systematics can be brought under control.

Broader impact

The approach could provoke a shift in the way likelihood-free statistical inference is done in the
physical sciences. Previous approaches, such as Approximate Bayesian Computation, require a hand-
crafted sufficient summary statistic and distance metric. The specific definition of both components
can significantly influence the approximated posteriors. Instead, our approach automatically learns an
efficient internal representation of the relation between the model parameters and the observables, and
therefore permits domain-scientits to pivot from attempting to solve the interactable inverse problem
— by defining assumed sufficient summary statistics — to the more natural forward modelling of the
phenomena of interest. The machine learning component would thus handle the inference aspect.
Finally, the amortization of the posterior estimates enables thorough statistical validation of the neural
networks to ensure qualitative posteriors. Something which is not feasible in ABC analyses.
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