
▪Nonzero solutions to MFT in this region indicate presence of many fixed-
points (FPs), which implies the existence of approximate line attractors at 
initialization

FP transition

D
M

FT
 tr

an
sit

io
n

Ch
ao

tic
 tr

an
sit

io
n

Chaotic transition

0 10 20 30 40 50

−0.075

−0.050

−0.025

0.000

λ
i

αz

0

1

5

20

0 10 20 30 40 50

Exponent rank (i)

−0.1

0.0

0.1

0.2

λ
i

αr

0

1

5

20

1.0 1.5 2.0 2.5 3.0
gh

−0.2

−0.1

0.0

0.1

0.2

λ
m
ax

DMFT

Numerics

αr

0

2

20

a

b

c

Dynamics of continuous-time gated recurrent neural networks

▪ Complete dynamical phase diagram to guide 
hyperparameter initialization in GRUs. Suggests 
interesting unexplored regions, e.g. near marginal stability 
with update gate effectively more switch-like. Also regions to 
avoid, e.g. near first-order transition to chaos with more 
switch-like reset gate.  

▪Gated RNNs have robust line attractors for a wide range of 
hyperparameters at initialization. Beneficial for training by 
mitigating exploding/vanishing gradients [5]. Also, can serve 
a computational purpose for certain tasks [7]. 

▪Rethinking edge-of-chaos initialization in light of first-
order (discontinuous) transition to chaos. Refined heuristic: 
initialize on critical transitions to chaos where timescales 
diverge. We show that a critical transition to chaos does not 
occur for certain hyperparameters.  

▪DMFT for adjoint dynamics provides a theory of 
gradients at initialization. Also opens up analysis for neural 
tangent kernel of RNNs. 

Hyperparameter Phase Diagram for Gated RNN
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Recurrent network model to study gating

Discussion and ongoing work
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of Biological Function

►Used as a model for studying internally generated chaotic fluctuations in 
firing rates with random couplings J
►Tuning J permits learning complex temporal sequences

Vanilla RNN model

additive interactions

Issues
►More realistic neuron models can have effective multiplicative interactions
►Vanilla RNNs are hard to train, especially for sequences with long-term de-
pendencies; gating significantly improves performance. 

Gated RNN model

external gating internal gating

Discrete-time version of the model is similar to a popular RNN used in ma-
chine learning: the Gated Recurrent Unit (GRU)

Dynamical Mean Field Theory for gated RNN

Full network eqn.
(3N ODEs)

Mean Field eqn.
(3 SDEs)

(Martin, Siggia, Rose, DeDominicis, Sompolinsky et al.)

Validating DMFT
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Analysis of the gradient dynamics

►Extended the continuous-time vanilla RNN to include gates controlling rate of update 
(z-gate) and output strength (r-gate)
►Developed a dynamical mean-field theory to study the gated RNN
►Combined MFT with random matrix theory to calculate the spectral curve of the 
state-to-state Jacobian and studied how this curve is shaped by the z- and r- gates
►More switch-like z-gate leads to clumping of slow modes and pinching of the spectral 
curve, which in the limit leads to regions of marginal stability near critical lines
►More switch-like r-gate leads to increase in complexity of phase space facilitating tran-
siton to chaos
►Calculated maximum Lyapunov exponent (using DMFT) and the full Lyapunov spec-
trum to study long-term behaviour. Dervied a condition for transition to chaos.
►Mapped out a phase diagram for the gated RNN with critical lines and regions of mar-
ginal stability
►Ongoing work to develop a MFT of gradients and study gradient dynamics
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▪In marginal stability phase (Region 5), pinching of spectrum 
of the instantaneous Jacobian             at zero occurs with 
increasing ! .αz

Continuous-time Gated RNN 
▪Equations of motion:

▪Dynamical mean-field theory (DMFT)

▪Hyperparameters are !  and !  for gates, and     for neuronal activation function αz αr

update gate reset gate analogous gates in GRU [4]
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Novel Discontinuous Transition to Chaos

• “Edge-of -chaos” init. implicitly assumes a critical transition to chaos (see e.g. [9]), which does not occur for large !αr

▪DMFT can be developed for adjoint dynamics [1], and used to study gradients 
DMFT for Gradients

▪Backpropagation of gradients is closely related to forward propagation via Jacobian 
(see e.g. [5]) !  close relationship between network dynamics (forward propagation) 
and trainability (backpropagation).

⇒

2 Gated Recurrent Neural Networks

We study a continuous-time gated RNN with two gates: one which dynamically controls the time
constant (z-gate), and another which modulates the network connectivity matrix (r-gate). The hidden
units h 2 N are coupled to the dynamical gating variables r, z 2 N which follow the dynamical
equations:

dh

dt
= �(z) �

h
� h + ghJ

h
⇣
�(h) � �(r)

⌘i
, (1)

⌧z
dz

dt
= �z + ↵zJ

z
�(h), ⌧r

dr

dt
= �r + ↵rJ

r
�(h), (2)

where � indicates element-wise product, and the nonlinearities � and � are applied element-wise to
their vector argument. Here our focus is on autonomous dynamics, and we leave the influence of inputs
for future work. The weight matrices have elements drawn from Gaussian distributions N (0, 1/N).
We use the activation �(x) = tanh(x), and a gating sigmoid function �(x) = 1/(1 + exp(�x)). We
consider the effect on the dynamics of varying the hyperparameters ⇥ = {gh, ↵z, ↵r}, which set the
scale of the different weight matrices. For most of what follows, we consider ⌧z = ⌧r = 1.

We comment briefly on the relation of our network equations to the popular discrete-time GRU
[3]. The z variable corresponds to the update gate, whereas the r variable is naturally analogous to
the reset gate. Conventionally, these variables do not have intrinsic dynamics themselves, a limit
which can be recovered by setting ⌧z = ⌧r = 0. The other subtle difference is that in the GRU, the
nonlinearity � typically comes after the linear transformation J

h. We find that the static mean-field
theory derived for our model actually matches that for the GRU found in [1] (see Appendix A for
details), and thus we expect much of the phenomena described here to be present in the GRU as well.

2.1 Dynamical mean-field theory

For the gated RNN with random weight matrices, we develop a dynamical mean-field theory which
reduces the description of the 3N deterministic differential equations to three stochastic differential
equations driven by Gaussian noise processes whose statistics have to be determined self-consistently.
Specifically,

dh

dt
= �(z) (�h + gh⌘h) ,

dz

dt
= �z + ↵z⌘z,

dr

dt
= �r + ↵r⌘r, (3)

where the Gaussian noise processes ⌘
a for a 2 {h, r, z} are non-Markovian and have self-consistently

determined variances. Let x(t) = (h(t), r(t), z(t)) stand for the triple of state variables, and '(x(t))
denote any functional of these variables. Then we define C'(x)(t, t

0) = ['(x(t))'(x(t0))], where
the expectation is taken over the stochastic processes ⌘

a. The self-consistency condition for the noise
covariances are then given by

[⌘h(t)⌘h(t0)] = C�(h)(t, t
0)C�(r)(t, t

0), [⌘z(t)⌘z(t
0)] = [⌘r(t)⌘r(t

0)] = C�(h)(t, t
0)

The z-gate appears as a multiplicative term in the equation for h(t), causing it to be non-Gaussian.
This complicates the analysis of the dynamical mean field theory (DMFT) in the presence of nonzero
↵z . However, Gaussianity is restored in the static limit dh/dt = 0, corresponding to fixed points of
the dynamics. Here, the static mean-field equations become

Ch = g
2
hC�(h)C�(r), Cr = ↵

2
rC�(h), (4)

We note that these static mean-field equations for our continuous-time gated RNN are the same as
those for the GRU found in [1].

We find that the important dynamical regimes, and the transitions between them, are determined
only on the gh � ↵r plane. However, ↵z essentially being a dynamical time constant, influences the
stability properties, which we discuss further in Sec. (3.3)

3 Phase Diagram for the Gated RNN

The hyperparameter phase diagram for our gated RNN is presented in Figure (1), the essential aspects
of which we describe in this section.
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▪Marginal stability persists asymptotically (long times), with the Lyapunov 
spectrum flattening out and showing an extensive number of Lyapunov 
exponents !  close to zero for large ! .λi αz

▪Unstable nonzero FPs become marginally stable in this region

1

32

4

Spontaneous appearance of (unstable) fixed points (FPs) 
via bifurcation. No dynamical signatures.

• Proliferation of fixed-points does not coincide with transition to chaos - in contrast to RNN without gating [8]

can be mapped to GRU MFT in [2]. 

Spontaneous appearance of long chaotic transients with 
lifetime scaling with N. Discontinuous jump in max 
Lyapunov exponent !  first-order transition to chaos⇒
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• Marginal stability helps trainability by controlling gradients 

• Line attractors shown to emerge as mechanism for computation in 
dynamical systems [7]
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