Dynamics of continuous-time gated recurrent neural networks

Tankut Can1, Kamesh Krishnamurthy2*, David J. Schwab1
1\text{\small Initiative for the Theoretical Sciences, CUNY Graduate Center;} 2\text{\small Princeton University}
*tankut.can@gmail.com; **kameshk@princeton.edu

\textbf{Continuous-time Gated RNN}

- Equations of motion: \(h, x, r \in \mathbb{R}^D \)
 \[\begin{align*}
 \dot{h}_i &= \sigma(x)_i - h_i + y_i \alpha \left(\langle h_i \rangle + \langle e_i \rangle \right), \\
 \dot{r}_i &= -r_i + \alpha \langle h_i \rangle
 \end{align*} \]

- \(\alpha \) is the gate control, and \(\langle \cdot \rangle \) denotes the state-averaged value of \(\cdot \).

- Mean-field equation for fixed point, can be mapped to GRU MFT in [2].

\textbf{DMF for Gradients}

- DMFT can be developed for adjoint dynamics [1], and used to study gradients

\[\begin{align*}
 \text{Loss} &= \int \left(\frac{\partial f}{\partial \theta} \right) \cdot \theta \, w/ \text{state} \, x = (h, x, r) \quad \text{\& parameters} \, \theta = (J_0, J_1, J_2) \\
 \text{Adjoint dynamics} \, \lambda = (\lambda_x, \lambda_h, \lambda_r) \\
 \text{Gradient norm via DMFT} \\
 \frac{\partial \theta}{\partial \lambda} = -D\left(\frac{\partial f}{\partial \theta} \right) \cdot \lambda, \, \lambda(T) = 0 \\
 \text{Backpropagation of gradients is closely related to forward propagation via Jacobian} \, D(t) \text{ (see e.g. [5])} \Rightarrow \text{close relationship between network dynamics (forward propagation) and trainability (backpropagation).}
\]

\textbf{Emergence of Marginal Stability and Line Attractors}

- Jacobian Eigenvalues \(\lambda(D(t)) \)

- Lyapunov spectrum

- Line attractors

- Marginal stability persists asymptotically (long times), with the Lyapunov spectrum flattening out and showing an extensive number of Lyapunov exponents \(\lambda \) close to zero for large \(\alpha \).

- Nonzero solutions to MFT in this region indicate presence of many fixed-point (FPs), which implies the existence of approximate line attractors at initialization

- Marginal stability helps trainability by controlling gradients

- Line attractors shown to emerge as mechanism for computation in dynamical systems [7]

- \(\lambda \) is large in region 5 should be a good init

- In marginal stability phase (Region 5), pinching of spectrum of the instantaneous Jacobian \(D(t) \) at zero occurs with increasing \(\alpha \).

- Unstable nonzero FPs become marginally stable in this region

- “Edge-of-chaos” init. implicitly assumes a critical transition to chaos (see e.g. [9]), which does not occur for large \(\alpha \).

- Proliferation of fixed-points does not coincide with transition to chaos - in contrast to RNN without gating [8]

\textbf{Main Takeaways}

- Complete dynamical phase diagram to guide hyperparameter initialization in GRUs. Suggests interesting unexplored regions, e.g. near marginal stability with update gate effectively more switch-like. Also regions to avoid, e.g. near first-order transition to chaos with more switch-like reset gate.

- Gated RNNs have robust line attractors for a wide range of hyperparameters at initialization. Beneficial for training by mitigating exploding/vanishing gradients [5]. Also, can serve a computational purpose for certain tasks [7].

- Rethinking edge-of-chaos initialization in light of first-order (discontinuous) transition to chaos. Refined heuristic: initialize on critical transitions to chaos where timescales diverge. We show that a critical transition to chaos does not occur for certain hyperparameters.

- DMFT for adjoint dynamics provides a theory of gradients at initialization. Also opens up analysis for neural tangent kernel of RNNs.

\begin{itemize}
 \item Complete dynamical phase diagram to guide hyperparameter initialization in GRUs. Suggests interesting unexplored regions, e.g. near marginal stability with update gate effectively more switch-like. Also regions to avoid, e.g. near first-order transition to chaos with more switch-like reset gate.
 \item Gated RNNs have robust line attractors for a wide range of hyperparameters at initialization. Beneficial for training by mitigating exploding/vanishing gradients. Also, can serve a computational purpose for certain tasks.
 \item Rethinking edge-of-chaos initialization in light of first-order (discontinuous) transition to chaos. Refined heuristic: initialize on critical transitions to chaos where timescales diverge. We show that a critical transition to chaos does not occur for certain hyperparameters.
 \item DMFT for adjoint dynamics provides a theory of gradients at initialization. Also opens up analysis for neural tangent kernel of RNNs.
\end{itemize}