Dynamics of continuous-time gated recurrent neural
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Continuous-time Gated RNN
= Equations of motion: h,z,r € RV
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h,z,r
n% = -z +a:J ¢(h), n% =-r+a,J"¢(h), g™~ NO1/N)
update gate reset gate analogous gates in GRU [4]

=Hyperparameters are a, and e, for gates, and gr for neuronal activation function

=Dynamical mean-field theory (DMFT)
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autocorrelation is order parameter
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=Mean-field equation for fixed point,
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can be mapped to GRU MFT in [2]. On = 91Csm oty Cr = rCotry

DMFT for Gradients
=DMFT can be developed for adjoint dynamics [1], and used to study gradients

T
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Adjoint dynamics X = (A, Az, Ar) Gradient norm via DMFT
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=Backpropagation of gradients is closely related to forward propagation via JacobianD(t)
(see e.g. [5]) = close relationship between network dynamics (forward propagation)

and trainability (backpropagation).

Hyperparameter Phase Diagram for Gated RNN
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Main Takeaways

= Complete dynamical phase diagram to guide
hyperparameter initialization in GRUs. Suggests
interesting unexplored regions, e.g. near marginal stability
with update gate effectively more switch-like. Also regions to
avoid, e.g. near first-order transition to chaos with more
switch-like reset gate.

=Gated RNNs have robust line attractors for a wide range of
hyperparameters at initialization. Beneficial for training by
mitigating exploding/vanishing gradients [5]. Also, can serve
a computational purpose for certain tasks [7].

=Rethinking edge-of-chaos initialization in light of first-
order (discontinuous) transition to chaos. Refined heuristic:
initialize on critical transitions to chaos where timescales
diverge. We show that a critical transition to chaos does not
occur for certain hyperparameters.

=DMFT for adjoint dynamics provides a theory of
gradients at initialization. Also opens up analysis for neural
tangent kernel of RNNs.
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s d =Marginal stability persists asymptotically (long times), with the Lyapunov unstable FPs emerge : chaotic transients
) spectrum flattening out and showing an extensive number of Lyapunov EP transition Chaotic transition
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2 = exponents /; close to zero for large a,. g <2
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é, % =Nonzero solutions to MFT in this region indicate presence of many fixed- =S
§ \ 1 points (FPs), which implies the existence of approximate line attractors at §
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« Marginal stability helps trainability by controlling gradients S
«In marginal stability phase (Region 5), pinching of spectrum * Line attractors shown to emerge as mechanism for computation in
of the instantaneous Jacobian D(t) at zero occurs with dynamical systems [7]
increasing a,. . . .
& = large a, in region 5 should be a good init
= Unstable nonzero FPs become marginally stable in this region

Novel Discontinuous Transition to Chaos

Spontaneous appearance of (unstable) fixed points (FPs)
via bifurcation. No dynamical signatures.
Spontaneous appearance of long chaotic transients with
lifetime scaling with N. Discontinuous jump in max
Lyapunov exponent = first-order transition to chaos
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3 =P 4 zero FP becomes unstable, chaos reigns

« “Edge-of -chaos” init. implicitly assumes a critical transition to chaos (see e.g. [9]), which does not occur for large a,.
« Proliferation of fixed-points does not coincide with transition to chaos - in contrast to RNN without gating [8]
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