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SUMMARY

. Physically motivated likelihood functions and priors often give rise to
complicated or degenerate inference problems, often requiring weeks of

computation and a portfolio of methods even in relatively low dimension.

- We propose a fast, robust and simple-to-use algorithm, for general
Bayesian computation and inference, applicable to a wide set of problems.

- Robust to degeneracies in the density function, such as discontinuities, nonsmoothness,
and zero density regions.

- Does not require tuning.
- Does not rely on gradients.

- Asymptotically exact.

. Enables down-stream tasks, such as
- Bayesian parameter inference,

. evidence estimation,

. expectations of functions,

. fast, constant-time sampling,

- conditional and marginal distribution estimation,

. estimation of divergences and mutual information.

METHODOLOGY
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where f : () — R, is an explicitly unknown density function defined on a bounded sample

space ) C R”, which can be evaluated for any @ € ). Z is the unknown normalizing constant.

A

REPRESENTATION OF f

» Search-tree over partitions of the sample space,

» constituting a Riemann sum.

A

ITERATIVE CONSTRUCTION OF f

« Addresses sample-efficiency by the prioritization-order of refining partitions.

» Uses an exploration-exploitation trade-off which considers all density observations seen so far.

» The time complexity of acquiring a new partition at step ¢ is O(log Ny + Uy log Uy).

In practice, decision-times are fractions of a millisecond even after millions of partitions.
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Figure: Partitions after 53, 303, 2101, and 100003 density evaluations, respectively.
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