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Summary
•Physically motivated likelihood functions and priors often give rise to
complicated or degenerate inference problems, often requiring weeks of
computation and a portfolio of methods even in relatively low dimension.

•We propose a fast, robust and simple-to-use algorithm, for general
Bayesian computation and inference, applicable to a wide set of problems.
•Robust to degeneracies in the density function, such as discontinuities, nonsmoothness,
and zero density regions.

•Does not require tuning.
•Does not rely on gradients.
•Asymptotically exact.

•Enables down-stream tasks, such as
•Bayesian parameter inference,
• evidence estimation,
• expectations of functions,
• fast, constant-time sampling,
• conditional and marginal distribution estimation,
• estimation of divergences and mutual information.

Methodology

P(θ) = f (θ)
∫
θ∈Ω f (θ)dθ

= f (θ)
Z

,

where f : Ω → R+ is an explicitly unknown density function defined on a bounded sample
space Ω ⊂ RD, which can be evaluated for any θ ∈ Ω. Z is the unknown normalizing constant.

Representation of f̂

•Search-tree over partitions of the sample space,
• constituting a Riemann sum.

Iterative construction of f̂

•Addresses sample-efficiency by the prioritization-order of refining partitions.
•Uses an exploration-exploitation trade-off which considers all density observations seen so far.
•The time complexity of acquiring a new partition at step t is O(logNt + Ut logUt).
In practice, decision-times are fractions of a millisecond even after millions of partitions.

Input: Density function f defined over Ω with
unknown normalization constant Z

Output: Approximation f̂ , Ẑ, as specified by
the produced partitioning ΠT

1 set t = 1 and initial partitioning Π1 = {Ω} ;
2 while Nt ≤ Nmax do
3 {Ωi} = to_divide [ Πt];
4 divide each partition Ωi, each one resulting in
{Ωj} new partitions;

5 add all sets of {Ωj} into Πt remove the divided
partitions {Ωi} from Πt;

6 set t→ t + 1 and update data structures;
7 end
8 return ΠT ;
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Partition division criteria

Vk ·
f (θk) + K̄

dk
2

 ≥ Vi ·
f (θi) + K̄

di
2

 ,

∀ i ∈ [1, Nt]

and Vk ·
f (θk) + K̄

dk
2

 ≥ β
Ẑ

Nt + 1
.

K̄upper
i = 2Vi+1f (θi+1)− Vif (θi)

Vidi − Vi+1di+1
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Figure: Partitions after 53, 303, 2 101, and 100 003 density evaluations, respectively.

Experiments

Figure: Parameter estimation for gravitational-wave physics.

Figure: GP regression using the Spectral Mixture Kernel.
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