DENSITY FUNCTION ESTIMATION USING ERGODIC RECURSION

Erik Bodin¹, Zhenwen Dai², Neill D. F. Campbell³, Carl Henrik Ek⁴

SUMMARY

- Physically motivated likelihood functions and priors often give rise to complicated or degenerate inference problems, often requiring weeks of computation and a portfolio of methods even in relatively low dimension.
- We propose a **fast**, **robust** and **simple-to-use** algorithm, for general Bayesian computation and inference, applicable to a wide set of problems.
- Robust to degeneracies in the density function, such as discontinuities, nonsmoothness, and zero density regions.
- Does not require tuning.
- Does not rely on gradients.
- Asymptotically **exact**.
- Enables down-stream tasks, such as
- Bayesian parameter inference,
- evidence estimation,
- expectations of functions,
- fast, constant-time sampling,
- conditional and marginal distribution estimation,
- estimation of divergences and mutual information.

METHODOLOGY

$$\mathcal{P}(\boldsymbol{\theta}) = \frac{f(\boldsymbol{\theta})}{\mathbf{\theta} \in \Omega} \frac{f(\boldsymbol{\theta})}{f(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

where $f: \Omega \to \mathbb{R}_+$ is an explicitly unknown density function defined on a bounded sample space $\Omega \subset \mathbb{R}^D$, which can be evaluated for any $\theta \in \Omega$. Z is the unknown normalizing constant.

Representation of \hat{f}

- Search-tree over partitions of the sample space,
- constituting a Riemann sum.

ITERATIVE CONSTRUCT

- Addresses sample-efficiency by the prioritization-order of refining partitions.
- Uses an exploration-exploitation trade-off which considers all density observations seen so far.
- The time complexity of acquiring a new partition at step t is $\mathcal{O}(\log N_t + U_t \log U_t)$. In practice, decision-times are fractions of a millisecond even after millions of partitions.

¹University of Bristol

²Spotify Research

³University of Bath ⁴University of Cambridge

2 while $N_t \leq N_{max} \, do$ **3** $\{\Omega_i\} =$ to_divide $[\Pi_t];$ $\{\Omega_i\}$ new partitions; partitions $\{\Omega_i\}$ from Π_t ; 7 end **8** return Π_T ; Partition division criteria and $V_k \cdot \left(f(\boldsymbol{\theta}_k) + \bar{K} \frac{d_k}{2} \right) \ge \beta \frac{Z}{N_t + 1}.$ $V_*f(\boldsymbol{ heta}_*)$ $\bar{K}_i^{\text{upper}} = 2 \frac{V_{i+1} f(\boldsymbol{\theta}_{i+1}) - V_i f(\boldsymbol{\theta}_i)}{V_i d_i - V_{i+1} d_{i+1}}$

$$\frac{f(\boldsymbol{\theta})}{Z},$$

ION OF
$$\hat{f}$$

EXPERIMENTS

CONTACT INFORMATION

www.linkedin.com/in/stigerikbodin mail@erikbodin.com