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Learning Deep Generative Models via Maximizing Likelihood Estimate the Gradient V,log pg(X), which is an Expectation in (1),
Requires Computing the Gradient of the Log-Likelihood Using Annealed Importance Sampling/Jarzynski Equality

Given a generative model defined by a joint distribution of observed data variables x|
and continuous latent variable z:

Po(z, 2) = po(2)pe(x|2) A
With training data x, we are interested in learning 6 by maximizing its marginal /\/\
likelihood:
log po(z) = IOg/pe(fEaZ)dZ

Computing log pg(X) is expensive because it involves a high dimensional integral.
However, we note that maximizing log pg(x) does not necessarily require computing ] -

Importance Sampling N Annealed Importance Sampling N\

q(z|z)  q(z]z)'Ppy(z|z)’  Pel2|7)

sample 27, ..., 2 ~ qg(z|7)

the value of log pg(x). What is necessarily required is the gradient of log pg(x) with sample 21, ..., 2K ~ q¢(2|T) . ) 13 8
respect to 0 set wp = Po(.2k) 09 Wr = wy,/ Yf—l W samp.le 21y ...y 25 from q(z\:z:) pe(z|z)” by
Vo log pe(z) = 7 [Ve log po(z, z)] (1) . qs (2K |) ~ y running L steps of Hamiltonian Monte Carlo (HMC)
2~po(z|z) with the potential energy of UP(2) = —log q(z|x)! P pe(z|x)”
which can be written as an expectation. q(20]2) " Ppg(20|x)P po(2;|T)
Qupe(21) Ge(2lX), K=45 g, (zx), L=5, K=3, T=3 Ce Lk = q(zp|z) q(zt]7) !~ Ppo(zL|z)P J

Several Previous Methods Used for Training Generative Models Can

Be Viewed as Devising Ways of Approximating the Expectation in (1)

| | A | Algorithm : Sampling ¢is(z|x) or qais(z|x)
: oy > o @ A N K: number of importance samples
« Variational Auto-Encoder (VAE) N ~ 4 . . .

e —4) —a N -4l L: number of integration steps in HMC
In maximizing the ELBO: e e s T: num of intermediate distributions
L(0,¢) = 3 [l()gpe(aj, z) — log q¢(z|:1:)] 86420 2 4608 78767420 2 4 608 TETeTEm2 0 2 4608 case 1: when importance sampling is used
z~qge(z|x) p(z|x) 9s(zlx), K=300  q,4(z]x), L=5, K=10, T=10 sample z1, ..., 2 ~ q¢(z|x)
6 follows the gradient: . . . Py set wy, = E2EE) and Wy, = wy/ Yoy wi
VoLl(0,9)= E |Vglogpe(z,z)] N N A N g case 2: when AIS is used
2~qe(z|z) 0; 0; @ | 0 sample 21, ..., zx and compute Wy, ..., Wx
which is an approximation to the expectation in (1). 2 N N7 2l AA with Algorithm 1 -
6. 6 _s| &7 sample 3 ~ Categorical(wq, ..., Wk)
- Importance Weighted Auto-Encoder (IWAE) sFa20zife ews202acs A0 246 return 2
; po L Zk . . .
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2150 2K VG (2| k 1 o (2K ) IWAE uses (2) as an
N approximation of (1) " Results of IWAE-DReG and our approach on the Results of IWAE-DReG, MH-HMC and our approach on A
VoLk(0,0) = Z wi Vg log pe(z, 2k) (2) via iImportance Omniglot and the MNIST dataset the Omniglot dataset with same computational cost.
k=1 sampling.
Po (T, 2k ) Omnigl MNIST ~ logp(x) ~
Wy = Wi/ sz wg = w(x, 2k, 0, P) = (24| 7) ~ logp() el MH-HMC (L=5.K =5, T = 5) 110257 :'ng(x)
9p\~k K=l K=5  K=50 K=1 K=5 K=30 Ours (L=5,K=5,T=5) 1102.47 IWAE-DReG (K = 55) -103.85
e Markov Cham Monte Carlo (MCMC) Methods [WAE-DReG  -109.41 -106.11 -103.91 -86.90 -85.52 -84.38 MH-HMC (L=5,K=5,T=11)  -101.32 Ours (L=5,K=1,T=11) -102.45
. Ours (T=5) -103.22 -102.47 -102.03 -84.56 -84.25 -83.93 =5K=5T= 101 _ 4
Directly estimate the expectation in (1) by drawing samples from the posterior O TC1l) 10045 0Tos lorer sa14 s37s 816y —em@o B2 T2ND — " IWAE-DReG (K = 275) 10313
N . - - - - - - MH-HMC (L=5,K=50,T=5)  -102.32 Ours(L=5K=5T=11)  -101.94
distribution pg(zIx) with MCMC. It takes a large number of steps for a Markov Ours (L =5,K =50, T = 5) 1102.03 WAEDRG (K= 2750 e
' It i 1ati _ MH-HMC (L=5,K=50,T=11) -101.25 ~URE ~ Toe
chain to converge, so it is much slower than variational methods MEEMCL=S. k2301 101,25 Ours (L=5.K=50.T=11) -101.64




