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Introduction

• Given a local Hamiltonian H , the Variational Monte Carlo
(VMC) algorithm returns an estimate of the minimal eigen-
value λmin(H) and an associated eigenvector.
• State-of-the-art results [1] are achieved through use of neu-
ral networks (e.g. Boltzmann machines) as trial wavefunc-
tions, parameterized by θ.
• However, accuracy comes at the expense of significant
computational time, due to steepest descent calculations of
Rayleigh quotient estimator:

L(θ) := 〈ψθ|H|ψθ〉
〈ψθ|ψθ〉

= E
x∼|ψθ(·)|2



〈x|H|ψθ〉
ψθ(x)


≥ λmin(H),

• We wish to reduce the time needed for VMC to opti-
mize new Hamiltonia by leveraging information obtained from
prior Hamiltonia.

Meta-VMC

• We propose Meta-VMC that learns an initialization for θ
from which VMC may quickly converge to the ground energy
of any one of an entire ensemble T of Hamiltonia.
• Meta-VMC optimizes the ensemble task loss

LML(θ) = Eτ∼T
Lτ

U t
τ(θ)


 ,

where Lτ is the task loss on an individual task τ in the en-
semble, and U t

τ(θ) : Rd → Rd is the t-fold application of a
task adaptation operator Uτ , such as gradient descent.
• This learning-to-learn formulation [2] maintains a dis-
tinct advantage over a standard multi-task learning approach
(which depends only on the mean of τ ), since it leverages
information from higher-order moments of τ .

Training

• Meta-training is done using a variant of model-agnostic
meta-learning (MAML) [3], which makes gradient up-
dates using the estimator

∇LML(θ) = Eτ∼T
(U t

τ)′(θ)∇Lτ
U t
τ(θ)


 ,

where (U t
τ)′(θ) is the Jacobian matrix of U t

τ(θ).
• In a practical algorithm, the intermediate variables θτ
and ∇τ are estimated stochastically using independent
batches of data generated by the same task τ .
• The computation of the Jacobian involves an expen-
sive back-propagation. First-order MAML (foMAML) is
a simplification of MAML in which the Jacobian matrix
is approximated by the identity matrix.

Algorithm

Input: Hamiltonia ensemble T , adaptation operator
Uτ , adaptation steps t.
Initialize θ
While not done do

Sample batch of disorder parameters B iid∼ T
for each disorder parameter τ ∈ B do

θτ = U t
τ(θ)

∇τ = (U t
τ)′(θ)∇Lτ(θτ)

end for
∇ = 1

|B|Στ∈B∇τ

θ ← Optimizer(θ,∇)
End While

Experiments
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• Our experiments focus on the Max-Cut instances with 50 nodes.
Ensemble T for meta-learning was chosen by fixing an adjacency matrix
and applying rounded Gaussian N (0, σ2) to its entries.
• For each task distribution, 32 graph instances are sampled for testing.
We train RBMs with various initialization methods on all testing graphs
for 300 VMC iterations and measure with the averaged approximation
ratio (cut number divided by optimal value of the SDP relaxation).
• Models initialized from MAML and foMAML can discover near-
optimal solutions within very few iterations, and outperform the base-
lines (e.g. Random and Pretrain) in the long run.
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