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Abstract

Materials and machines are often designed with particular goals in mind, so that
they exhibit desired responses to given forces. Here we explore an alternative
approach, physical coupled learning. In this paradigm, a physical network such as
a flow network consisting of pipes conveying fluid, adapts the pipe conductances to
obtain a desired pressure response at target nodes in response to pressures applied
at source nodes, similar to supervised machine learning. Instead of obtaining the
desired pressure response by minimizing some loss function, coupled learning
introduces physically plausible learning rules. By physically plausible we mean (1)
that the conductance of each pipe responds only to properties of the flow through
that pipe, such as the pressure drop, and that (2) the learning rule itself should
not contain explicit information about the desired response. We demonstrate how
disordered flow networks can learn to distinguish handwritten digits. These results
suggest the feasibility of a new class of smart metamaterials that can adapt in-situ
to users’ needs.

1 Introduction

Engineered systems and materials are typically designed for particular properties or functions [1].
The design process often involves numerous trial and error iterations, where the system is repeatedly
tested for the desired functionality [2], modified and then tested again. A second class of strategies
is based on learning, where a system adjusts to display desired functionality given external signals
(training examples). One class of methods, “global supervised learning," is ubiquitous for problems
such as classification [3, 4]. These methods involve optimizing a global cost function that depends on
all of the microscopic details of the system. Such methods have been used to design physical flow
and elastic networks with desired functions such as allostery [5, 6]. In this physical context, such
learning methods were dubbed tuning, since modifying the learning degrees of freedom (e.g. pipe
conductances in flow networks) requires external intervention.

Natural systems (e.g. the brain) develop desired functions using a different learning framework that
uses local learning rules. Such learning is autonomous, requiring no external designer for evaluation
of the system and its subsequent modification. This learning approach is particularly relevant in
physical networks such as flow networks. The microscopic elements of such networks cannot perform
computations and do not encode information about the desired functionality a priori.

Here we consider training flow networks to achieve tailored responses of “target" nodes to external
constraints applied at “source" nodes, e.g. when pressures corresponding to MNIST images are
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Figure 1: Coupled learning in flow networks. a) In the free state, node pressures are constrained
such that source nodes (red) have specific pressure values pS . The target node pressures pT and
the dissipated power at all pipes Pj attain their steady state values due to the physical processes in
the network. b) In the clamped phase, we further constrain the target node pressures to be slightly
closer to their desired values compared to the free phase. c) A local learning rule modifying pipe
conductance according to its flow response is proportional to the difference in dissipated power
between the free and clamped states.

applied to source nodes, we require target nodes to have desired pressures corresponding to a specific
digit.

We propose a general framework, “coupled supervised learning," for deriving the local learning rules
for physical networks such as flow networks. These local learning rules specify how learning degrees
of freedom (conductances of pipes) respond to local conditions (e.g. the current through each pipe).
The proposed learning rules lead to results similar to those obtained by minimizing a cost function.

Coupled learning is inspired by advances in neuroscience and computer science [7, 8, 9, 10, 11]. The
learning rules are based on the difference in response between two steady states of the system, one in
which only source constraints are applied (free state), the other where source and target constraints are
applied simultaneously (clamped state). We demonstrate how coupled learning works for disordered
flow networks, and test our learning framework on a standard classification problem, distinguishing
handwritten digits. Trained flow networks classify digits with high accuracy, on par with simple
machine learning algorithms.

2 Coupled learning in flow networks

A flow network is defined by N nodes carrying pressure values pµ. Nodes are connected by pipes
characterized by conductances kj ; these conductances are the learning degrees of freedom, whose
modification enables the network to adapt to a desired function. Assuming each pipe is directed
from nodes µ1 to µ2, the current in the pipe is given by Ij = kj(pµ1

− pµ2
) ≡ kj∆pj . If boundary

conditions are applied to the network (e.g. fixed pressure values at some nodes) the network finds a
flow steady state, in which the total dissipated power P = 0.5

∑
j kj∆p

2
j is minimized by varying

the pressures at unconstrained nodes.

We now define a generic learning task. Divide the node pressures {pµ} into three types, source nodes
pS , target nodes pT , and “hidden" nodes pH . The target node pressures are to have a set of values
{PT } when the source node pressures are constrained to {PS}. A generic disordered flow network
does not possess this function, so design strategies are needed to find values for the pipe conductances
{kj} that achieve the desired task.

For the network to learn, we allow the pipe conductance values {kj} to vary depending on the
physical state of the network {pµ}. We focus on local learning rules, where kj in each pipe j only
changes in response to the current in that pipe. Following ideas from Hebbian contrastive learning [7]
and equilibrium propagation [10], we define two special network states. In the free state pFµ only
the source nodes pS are constrained to their values PS , allowing pT , pH to obtain their steady state
(Fig. 1a). The clamped state pCµ is the state where both the source and target node pressures pS , pT
are constrained to PS and pCT , respectively, so that only the remaining (hidden) nodes pH are allowed
to change to find a steady state. The values of the dissipated power in the resulting steady states are
denoted PF and PC for the free and clamped states, respectively.
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Figure 2: Training a flow network with coupled learning. (a) Untrained disordered flow network
(N = 512 nodes) with uniform pipe conductance ki = 1 (uniform edge thickness). Red and blue dots
correspond to source and target nodes with dot sizes indicating the magnitudes of the source pressures
{PS} and desired target pressures {PT }. (b) In each step of the learning process, the conductance
values are modified using Eq. 2, according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) During training of a network, the pressure values of
the target nodes approach the desired values, as indicated by the shrinking error (solid line); as the
error diminishes, conductance modification ∆k (dashed line) vanishes as well. (d) After training, the
network conductance values are considerably changed compared to the initial network shown in (a).

We introduce a trainer (supervisor) that nudges the target node pressures slightly away from their free
state pFT values by clamping them at

pCT = pFT + η[PT − pFT ] (1)

where η � 1 (Fig. 1b). The trainer imposes pressures on the target nodes that are a small step closer
to the desired response PT . We then propose a learning rule for the pipe conductance values (Fig. 1c):

k̇j = αη−1 ∂

∂kj
{PF − PC} =

1

2
αη−1{[∆pFj ]2 − [∆pCj ]2}, (2)

where α is a scalar learning rate. Note that the derivative of the physically minimized function
(power dissipation P) is taken with respect to the learning degrees of freedom {kj}. The simplest
implementation of coupled learning is to iteratively apply Eq. 2. We focus on learning in the
quasi-static limit where we completely relax the node pressures to their steady state at each iteration.

The learning rule of Eq. 2 is manifestly local, as the conductance of a pipe kj changes only due to
the flow at that pipe. Such local learning rules may conceivably be implemented in physical pipes
for which the conductance (radius) of the pipe is controlled by the current in it. Furthermore, the
network is not required to encode information about the desired function a priori. This information is
supplied by the actions of the external supervisor, slightly nudging the target node pressures towards
the desired state at every iteration. These properties of coupled learning stand in contrast to tuning
algorithms based on optimization of global cost functions.

We test coupled learning on disordered flow networks (size N = 512). A network is initialized
with uniform pipe conductance kj = 1 (Fig. 2(a)). We pick 10 nodes randomly as source nodes and
apply source pressures PS . Source pressures are sampled from a Gaussian distribution N (0, 1). We
also choose 10 target nodes, with desired pressures at target nodes, {PT }, sampled from a Gaussian
distribution,N (0, 0.2

∑
PS). We compute the dissipated power {PFj } for each edge j of the network

in the free state by solving the linear set of equations corresponding to Kirchhoff’s law at every
node [6]. To compare the output pFT of the network to the desired response PT , we use the standard
mean squared error function C = 1

2

∑
T [pFT − PT ]2.

In the clamped state we nudge the target nodes towards their desired value (Eq. 1, η = 10−3) and
similarly compute the dissipated power {PCj } . After obtaining the clamped state, we update the
conductance values (Eq. 2) with α = 5 · 10−4. Fig. 2(b) shows the change of conductance for each
edge at the first iteration of learning. This constitutes one step of the training process; at the end of
each step, we compute the error function C (Fig. 2(c)). The difference between the obtained targets
and the desired ones decreases by orders of magnitude during training, reaching machine precision.
We find that the magnitude of changes in the conductance vector, |∆k|, also decreases towards zero
during training. This shows that the learning process is adaptive–it slows down as it approaches
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Figure 3: Classification of MNIST digits (0’s & 1’s). a) Cost values for the digits 0 (blue) and 1
(black) pressures. Training error is indicated by full lines and test error in dashed lines. b) Accuracy
of classification (fraction of correct predictions) for digits 0 and 1. c-d) Response of the network
when presented with the image on the top-left. Flow power is indicated by edge brightness, while
target node pressures are indicated with blue (0) and black (1) dots. When a 0 image is shown, the 0
target node has high pressure and the 1 target node has low pressure (and vice versa).

good solutions. The final trained network is displayed in Fig. 2(d), with edge thicknesses indicating
conductance. The pipes of the trained network have changed considerably compared to the initial one
shown in Fig. 2(a), with some pipes effectively removed (conductances near zero).

3 Supervised classification with flow networks

We train flow networks to distinguish between images of handwritten digits (0 and 1). We pick 50
images of each digit from the MNIST database [12] as a training set, and 50 images for test sets.
Instead of using pixel values, we carry out a Principal Component Analysis of all MNIST images, and
train the network with the top 25 principal components of the training set images. Source pressures
are given by these principal components of the training images. We pick 2 target nodes, one for each
digit. The network is trained so that when an image of ‘0’ is shown, the associated ‘0’ target node
has high pressure (p‘0′ = 1), and the ‘1’ node has no pressure (p‘1′ = 0). The target pressures are
reversed when an example of the digit ‘1’ is chosen. At each iteration, the network is presented with
a single image-label pair, sampled at random from the training set. A training epoch is defined as the
time required for the network to be presented with 100 training examples.

The error in pressure values is shown in Fig. 3(a) for each digit. Coupled learning reduces both
training and test errors. For discrete digit predictions, we say that the predicted label is given by
the target node having the larger pressure. We find that the classification accuracy of the network
improves dramatically during training (Fig. 3b), with training (test) accuracy reaching 98% (95%).
A logistic regression model trained on the same data yielded a training accuracy of 100% and a
test accuracy of 98%. Note that we did not tune hyperparameters to achieve the listed accuracies;
such tuning might well improve the performance of our algorithm. In Fig. 3c-d, network response
is shown for two select input images. When the source nodes are constrained with pressure values
corresponding to an image of a ‘0’, the ‘0’ target node has high pressure (blue) while the ‘1’ target
node has low pressure. The opposite response occurs when an image of ‘1’ is applied as input.

4 Concluding remarks

In this work we introduced coupled learning, a class of learning rules born of contrastive Hebbian
learning and equilibrium propagation [7, 10], and applied it to flow networks. Coupled learning rules
are physically plausible; they can be implemented in realistic materials and networks, allowing them
to autonomously learn from external signals.

Such learning machines may be trained in-situ, so that it is not necessary to know the network
geometry or topology, or even any information about the physical or learning degrees of freedom.
This approach should be particularly valuable for experimental systems, which are difficult to
characterize in full microscopic detail. As long as the proper learning rules are implemented, the
systems can be trained simply by applying the proper boundary conditions. As an additional benefit,
this learning approach is scalable–it can be applied to arbitrarily large systems. We hope the results
shown here will inspire further research of new classes of physical learning machines, capable of
autonomously adapting to perform new tasks and able to generalize to diverse inputs.
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While revising our paper, we found that a similar approach for the case of flow/resistor networks has
been introduced in Ref. [13].

Broader Impact

The confluence of ideas from neuroscience and machine learning has contributed immensely to our
fundamental understanding of the nature of learning. We study whether these ideas can be exported
to real world physical networks, to construct “learning machines", able to autonomously adapt to
external influence in order to gain desired functionality. Such machines are essentially rudimentary
brains, composed of simple mechanical parts. The simplicity of these machines may allow us to
study fundamental questions about learning, such as basic trade-offs that underlie physical learning
algorithms. Moreover, if physical learning machines are realized, they can be trained in-situ by users,
rather than a specialist designer. Adaptable learning machines are thus expected to be particularly
useful if desired physical tasks are either not known in advance, or defined by examples of use.
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