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Abstract

Neural Controlled Differential Equations (Neural CDEs) are the continuous-time
analogue of an RNN, just as Neural ODEs are analogous to ResNets. However
just like RNNs, training Neural CDEs can be difficult for long time series. Here,
we propose to apply a technique drawn from stochastic analysis, namely the log-
ODE method. Instead of using the original input sequence, our procedure sum-
marises the information over local time intervals via the log-signature map, and
uses the resulting shorter stream of log-signatures as the new input. This repre-
sents a length/channel trade-off. In doing so we demonstrate efficacy on problems
of length up to 17k observations and observe significant training speed-ups, im-
provements in model performance, and reduced memory requirements compared
to the existing algorithm.

1 Introduction

Neural controlled differential equations (Neural CDEs) [1] are the continuous-time analogue to a
recurrent neural network (RNN), and provide a natural method for modelling temporal dynamics
with neural networks. In contrast to Neural ODEs [2] the vector field of a Neural CDE depends upon
the time-varying data, so that the trajectory of the system is driven by a sequence of observations.

We recall the definition of a Neural CDE as introduced in [1]. Consider a time series x as
a collection of points xi ∈ Rv−1 with corresponding time-stamps ti ∈ R such that x =
((t0, x0), (t1, x1), ..., (tn, xn)), and t0 < ... < tn. Let X : [t0, tn] → Rv be some interpolation
of the data such that Xti = (ti, xi). Here we use a linear interpolation scheme.

Let ξθ : Rv → Rw and fθ : Rw → Rw×v be neural networks and let `θ : Rw → Rq be linear.

We define Z as the hidden state and Y as the output of a neural controlled differential equation
driven by X if

Zt0 = ξθ(t0, x0), with Zt = Zt0 +

∫ t

t0

fθ(Zs)dXs and Yt = `θ(Zt) for t ∈ (t0, tn]. (1)

The integral of equation (1) is a Riemann–Stieltjes integral. In the original paper [1], the authors
noted that, assuming differentiability of the path, dXs can be replaced with dX

ds (s)ds, reducing the
CDE onto an ODE. Existing tools for Neural ODEs may be used to evaluate this, and to backpropa-
gate.

By moving from the discrete-time formulation of an RNN to the continuous-time formulation of a
Neural CDE, then every kind of time series data is put on the same footing, whether it is regularly
or irregularly sampled, whether or not it has missing values, and whether or not the input sequences
are of consistent length.
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1.1 Contributions

Neural CDEs, as with RNNs, begin to break down for long time series. Here, we apply the log-ODE
method, which is a numerical method from stochastic analysis and rough analysis. It is a method for
converting a CDE to an ODE, acting as a drop-in replacement for the original procedure that uses
the derivative of the control path.

This may be interpreted as taking integration steps larger than the discretisation of the data, incor-
porating substep information through higher-order correction terms. See Figure 1.

We find that this method is particularly beneficial for long time series (and incidentally does not
require differentiability of the control path). With this method both training time and model perfor-
mance of Neural CDEs are improved, and memory requirements are reduced.
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Figure 1: Left: The original Neural CDE formulation. The pathX is quickly varying, meaning a lot
of integration steps are needed to resolve it. Right: The log-ODE method. The log-signature path is
more slowly varying (in a higher dimensional space), and needs fewer integration steps to resolve.

2 Method

Recall that we observe some time series x = ((t0, x0), (t1, x1), ..., (tn, xn)), and have constructed
a piecewise linear interpolation X : [t0, tn]→ Rv such that Xti = (ti, xi).

We now pick points ri such that t0 = r0 < r1 < · · · < rm = tn. In principle these can be variably
spaced but in practice we will typically space them equally far apart. The total number of points m
should be much smaller than n.

2.1 Theory

The Log-Signature For X : [t0, tn] → Rv and t0 ≤ ri < ri+1 ≤ tn then the depth-N log-
signature of X over the interval [ri, ri+1], denoted LogSigNri,ri+1

(X) ∈ Rβ(v,N), is a collection of
summary statistics about the path X; see [3] for a formula for β. We omit the full mathematical
description here but it suffices to understand that the log-signature is a vector of real values that give
a description of a path over an interval. Intuitively speaking, these values describe the information
that is most important for solving the CDE equation over that interval.

The Log-ODE Method Let f̂ : Rw → Rw×v . The log-ODE method states

Zb ≈ Ẑb where Ẑu = Ẑa +

∫ u

a

f̂(Ẑs)
LogSigNa,b(X)

b− a
ds, and Ẑa = Za. (2)

where Z is as defined in equation (1), and the relationship between f̂ to f is given in [4].

The approximation becomes arbitrarily good as N → ∞. That is, the solution of the CDE may be
approximated by the solution to an ODE. We will additionally consider a relaxation, by modelling
f̂ directly as a neural network.
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2.2 Updating the Neural CDE Hidden State Equation

Recall in the original formulation that dXs was replaced with dX
ds (s)ds. For the log-ODE approach,

over each interval [ri, ri+1], we instead replace fθ(Zs)dXs with f̂θ(Zs)
LogSigN

ri,ri+1
(X)

ri+1−ri ds.

That is, defining the piecewise ĝ(X, s) = f̂θ(Zs)
LogSigN

ri,ri+1
(X)

ri+1−ri for s ∈ [ri, ri+1) we may now
instead solve the Neural CDE via the log-ODE equation

Zt0 = ξθ(t0, x0), with Zt = Zt0 +

∫ t

t0

ĝ(X, s)ds and Yt = `θ(Zt) for t ∈ (t0, tn]. (3)

2.3 Discussion

Ease of Implementation This method is straightforward to implement using pre-existing tools
and is available in open source torchcde project.

Length/Channel Trade-Off The sequence of log-signatures is now of length m, which was cho-
sen to be much smaller than n. As such, it is much more slowly varying over the interval [t0, tn] than
the original data, which was of length n. The differential equation it drives is better behaved, and so
larger integration steps may be used in the numerical solver. This is the source of the speed-ups of
this method; we observe typical speed-ups by a factor of about 100.

Generality of the Log-ODE Method If depth N = 1 and steps ri = ti are used, then the above
formulation exactly reduces onto the original Neural CDE formulation using linear interpolation.
Thus the log-ODE method in fact generalises the original approach.

Applications In principle the log-ODE method may be applied to solve any Neural CDE. In prac-
tice, the reduction in length (from n to m), coupled with the loss of information (from using the
log-signature as a summary statistic) makes this particularly useful for long time series.

Memory Efficiency Long sequences need large amounts of memory to perform backpropagation-
through-time (BPTT). As with the original Neural CDEs, the log-ODE approach supports memory-
efficient backpropagation via the adjoint equations, alleviating this issue. See [1].

3 Experiments

We investigate solving a Neural CDE with and without the log-ODE method on four real-world
problems. Every problem was chosen for its long length. The lengths are in fact sufficiently long
that adjoint-based backpropagation [2] was needed to avoid running out of memory at any reasonable
batch size. Every problem is regularly sampled, so we take ti = i.

We will denote a Neural CDE model with log-ODE method, using depth N and step s, as NCDEsN .
Taking N = 1 (and any s) corresponds to not using the log-ODE method, with the data subsampled
at rate 1/s, as per section 2.3. We use NCDE1

1 as our benchmark: no subsampling, no log-ODE.

3.1 Classifying EigenWorms

Our first example uses the EigenWorms dataset from the UEA archive [5]. This consists of time
series of length 17 984 and 6 channels, corresponding to the movement of a roundworm. The goal
is to classify each worm as either wild-type or one of four mutant-type classes.

See Table 1. We see that the straightforward NCDE1
1 model takes roughly a day to train. Using

the log-ODE method (NCDE2, NCDE3) speeds this up to take roughly minutes. Doing so addi-
tionally improves model performance dramatically, and reduces memory usage. Naive subsampling
(NCDE8

1, NCDE32
1 , NCDE128

1 ) only achieve speed-ups without performance improvements.

3.2 Estimating Vitals Signs from PPG and ECG data

Next we consider the problem of estimating vital signs from PPG and ECG data. This comes from
the TSR archive [6] using data from the Beth Israel Deaconess Medical Centre (BIDMC). We con-
sider three separate tasks, in which we aim to predict a person’s respiratory rate (RR), their heart
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Model Step Test Accuracy (%) Time (Hrs) Memory (Mb)

1 62.4 ± 12.1 22.0 176.5

NCDE1
8 64.1 ± 13.3 3.1 24.3

32 64.1 ± 14.3 0.5 8.0
128 48.7 ± 2.6 0.1 3.9

8 77.8 ± 5.9 2.1 94.2
NCDE2 32 67.5 ± 12.1 0.7 28.1

128 76.1 ± 5.9 0.2 7.8
8 70.1 ± 6.5 1.3 460.7

NCDE3 32 75.2 ± 3.0 0.6 134.7
128 68.4 ± 8.2 0.1 53.3

Table 1: Mean and standard deviation of test set accuracy (in %) over three repeats, as well as
memory usage and training time, on the EigenWorms dataset for depths 1–3 and a small selection
of step sizes. The bold values denote that the model was the top performer for that step size.

Depth Step L2 Time (H) Memory (Mb)
RR HR SpO2 RR HR SpO2

1 2.79 ± 0.04 9.82 ± 0.34 2.83 ± 0.27 23.8 22.1 28.1 56.5

NCDE1
8 2.80 ± 0.06 10.72 ± 0.24 3.43 ± 0.17 3.0 2.6 4.8 14.3

32 2.53 ± 0.23 12.23 ± 0.43 2.68 ± 0.12 1.9 0.9 2.2 9.8
128 2.64 ± 0.18 11.98 ± 0.37 2.86 ± 0.04 0.2 0.2 0.3 8.7

8 2.63 ± 0.12 8.63 ± 0.24 2.88 ± 0.15 2.1 3.4 3.3 21.8
NCDE2 32 1.90 ± 0.02 7.90 ± 1.00 1.69 ± 0.20 1.2 1.1 2.0 13.1

128 1.86 ± 0.03 6.77 ± 0.42 1.95 ± 0.18 0.3 0.4 0.7 10.9
8 2.42 ± 0.19 7.67 ± 0.40 2.55 ± 0.13 2.9 3.2 3.1 43.3

NCDE3 32 1.67 ± 0.01 4.50 ± 0.70 1.61 ± 0.05 1.3 1.8 7.3 20.5
128 1.51 ± 0.08 2.97 ± 0.45 1.37 ± 0.22 0.5 1.7 1.7 17.3

Table 2: Mean and standard deviation of the L2 losses on the test set for each of the vitals signs
prediction tasks (RR, HR, SpO2) on the BIDMC dataset, across three repeats. Only mean times
are shown for space. The memory usage is given as the mean over all three of the tasks as it was
approximately the same for any task for a given depth and step. The bold values denote the algorithm
with the lowest test set loss for a fixed step size for each task.

rate (HR), and their oxygen saturation (SpO2). The data is sampled at 125Hz, with each series hav-
ing an overall length of 4 000. There are 7 949 training samples, and 3 channels (including time).
The metric used to evaluate performance is the L2 loss. The results over a range of step sizes are
presented in table 2.

We find that the depth 3 model is the top performer for every task at any step size. What’s more,
it does so with a significantly reduced training time. We attribute the improved performance to
the log-ODE model being better able to learn long-term dependencies due to the reduced sequence
length. Note that the performance of the NCDEs2, NCDEs3 models actually improves as the step size
is increased. This is in contrast to NCDEs1, which sees a degradation in performance.

4 Conclusion

We demonstrate how to effectively apply Neural CDEs to long (17k) time series, using the log-ODE
method. The model may still be solved via ODE methods and thus retains adjoint backpropagation
and continuous dynamics. In doing so we see significant training speed-ups, improvements to model
performance, and reduced memory requirements.
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Broader Impact

As data becomes increasingly abundant – in particular high frequency sensor data – we hope that the
present paper will help to address some of the challenges that this data poses. This will likely benefit
the time series community. We do not identify anyone who may be specifically disadvantaged by
this research, or any specific negative impacts due to the introduction of this method.
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