
Neural CDEs for Long Time Series via the Log-ODE Method
James Morrill, Patrick Kidger, Cristopher Salvi, James Foster, and Terry Lyons

University of Oxford; Alan Turing Institute.

Summary

Neural CDEs can be viewed as a continuous-time RNN, much as Neural ODEs with ResNets.
However, as with RNNs, training can begin to breakdown for long time series.
In this paper we show:
•How to convert the CDE equation into an equivalent ODE by using the log-ODEmethod, which
is a standardmethod for solving CDEs in the field of rough analysis. Tools fromNeural ODEs
can then be directly applied.
• In particular this allow us to take integration steps larger than the discretisation of the data –
whilst retaining solution accuracy.
•On long time series, it can result in speed-ups of up to 100×, significantly reduced memory
requirements, and improvements in performance.

Background: Neural CDEs
Consider a time series x as a collection of points G8 ∈ RE−1 with corresponding time-stamps C8 ∈ R
such that x = ((C0, G0), (C1, G1), ..., (C= , G=)), and C0 < ... < C= and let - : [C0, C=] → RE be some
interpolation of the data such that -C8 = (C8 , G8).

Let �� : RE → RF and 5� : RF → RF×E be neural networks and let ℓ� : RF → R@ be linear.

We define / as the hidden state and . as the output of a neural controlled differential equation driven
by - if

/C0 = ��(C0, G0), with /C = /C0 +
∫ C

C0

5�(/B)d-B and .C = ℓ�(/C) for C ∈ (C0, C=]. (1)

• If instead of d-B there was dB, then this would be a Neural ODE.
•The d-B is what allows the hidden state to be updated from incoming data. (Unlnike
Neural ODEs, for which the solution is determined by the initial condition.)
•For a differentiable control path -, the simple way to convert to an ODE via d-B = d-

dB (B)dB.

Background: The Log-ODE Method
Consider the CDE integral equation for /C defined above. The log-ODE method states:

/1 ≈ /̂1 where /̂D = /̂0 +
∫ D

0

5̂ (/̂B)
LogSig#0,1(-)

1 − 0 dB, and /̂0 = /0. (2)

•That is, the solution to the CDE in (1) can be approximated by the solution to the ODE in
(2).

•The d-B term has been replaced by
LogSig#

0,1
(-)

1−0 dB.
•LogSig#0,1(-) is a particular map to a vector of values that summarise -. Intuitively, these
are the terms that are most relevant to solving the CDE equation.
•This approximation becomes arbitrarily good as # →∞.

Updating the Neural CDE Hidden State Equation
Assume the time series is very long. Pick points A8 such that C0 = A0 < A1 < · · · < A< = C= with < � =.
In model training we will simply split the integral from equation (1) over each [A8 , A8+1] and update
via

/A8+1 = /A8 +
∫ A8+1

A8

5̂�(/̂B)
LogSig#0,1(-)

1 − 0 dB. (3)

Figure 1: Left: The original NCDE formulation. The path -C is quickly varying, meaning a lot of integration steps are
needed to resolve it. Right: The log-ODEmethod. The log-signature path ismore slowly varying (in a higher dimensional
space), and needs fewer integration steps to resolve.

•The length of the sequence is now <, which was chosen to be much smaller than =. This
is the source of the speed-ups of this method; we observe typical speed-ups by a factor of
about 100.
• If depth # = 1 and steps A8 = C8 are used, then the above formulation exactly reduces onto
the original Neural CDE formulation. Thus the log-ODE method in fact generalises the
original approach.

Experiments
•Tested on four problems with lengths up to 17,000.
•Observe significant training speed-ups, reducedmemory requirements, and even improve-
ments in performance when compared to the original NCDE model.

Find out more:

This paper: https://arxiv.org/abs/2009.08295
NCDEs paper: https://arxiv.org/abs/2005.08926
Code: https://github.com/jambo6/neuralCDEs-via-logODEs
Library: https://github.com/patrick-kidger/torchcde
Email: morrill@maths.ox.ac.uk

https://arxiv.org/abs/2009.08295
https://arxiv.org/abs/2005.08926
https://github.com/jambo6/neuralCDEs-via-logODEs
https://github.com/patrick-kidger/torchcde
morrill@maths.ox.ac.uk

