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SUMMARY

Neural CDEs can be viewed as a continuous-time RNN, much as Neural ODEs with ResNets.
However, as with RNNs, training can begin to breakdown for long time series.

In this paper we show:

¢ How to convert the CDE equation into an equivalent ODE by using the log-ODE method, which
is a standard method for solving CDEs in the field of rough analysis. Tools from Neural ODEs
can then be directly applied.

e In particular this allow us to take integration steps larger than the discretisation of the data —
whilst retaining solution accuracy.

¢ On long time series, it can result in speed-ups of up to 100x, significantly reduced memory
requirements, and improvements in performance.

BACKGROUND: NEURAL CDEs

Consider a time series x as a collection of points x; € R’ with corresponding time-stamps t; € R
such that x = ((to, xo), (f1, x1), ..., (t4, X)), and to < ... < t, and let X: [to,t,] — R” be some
interpolation of the data such that X;, = (¢;, x;).

Let £g: RY = RY and fg: RY — R%*Y be neural networks and let {g: R” — RY be linear.

We define Z as the hidden state and Y as the output of a neural controlled differential equation driven
by X if

t
Zi, = Eolto, x0), with Zy =27, +/ fo(Zs)dXs and Y; = {p(Zy) fort € (to, ty). (1)
to

e [f instead of dX; there was ds, then this would be a Neural ODE.

e The dX; is what allows the hidden state to be updated from incoming data. (Unlnike
Neural ODEs, for which the solution is determined by the initial condition.)

e For a differentiable control path X, the simple way to convert to an ODE via dX; = 9%(s)ds.

BAckGROUND: THE LOG-ODE MEeTHOD
Consider the CDE integral equation for Z; defined above. The log-ODE method states:

~ ~ u_ LogSigi\’ 5 (X) -

Zy~Zy, Where Z,=Z7Z,+ f(Zs) ; c,z ds, and Z,=~7,. (2)
) _

¢ That is, the solution to the CDE in (1) can be approximated by the solution to the ODE in

(2)-
ogSig!
e The d X term has been replaced by - ngZ,b 2 ds.

° LogSigilV ,(X) is a particular map to a vector of values that summarise X. Intuitively, these
are the terms that are most relevant to solving the CDE equation.

¢ This approximation becomes arbitrarily good as N — oo.

UPDATING THE NEURAL CDE HiDDEN STATE EQUATION

Assume the time series is very long. Pick points r; such thatto =ro <71 <--- <ry =t, withm < n.
In model training we will simply split the integral from equation (1) over each |r;, 7;+1] and update

via
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Zi’i+1 — Zri + fG(ZS) dS' (3)
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Figure 1: Left: The original NCDE formulation. The path X; is quickly varying, meaning a lot of integration steps are
needed to resolve it. Right: The log-ODE method. The log-signature path is more slowly varying (in a higher dimensional
space), and needs fewer integration steps to resolve.

e The length of the sequence is now m, which was chosen to be much smaller than #n. This

is the source of the speed-ups of this method; we observe typical speed-ups by a factor of
about 100.

o [f depth N =1 and steps r; = t; are used, then the above formulation exactly reduces onto
the original Neural CDE formulation. Thus the log-ODE method in fact generalises the
original approach.

EXPERIMENTS

e Tested on four problems with lengths up to 17,000.

¢ Observe significant training speed-ups, reduced memory requirements, and even improve-
ments in performance when compared to the original NCDE model.
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