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Abstract

ADCME is a novel computational framework to solve inverse problems involving
physical simulations and deep neural networks (DNNs). This paper benchmarks its
capability to learn spatially-varying physical fields using DNNs. We demonstrate
that our approach has superior accuracy compared to the discretization approach
on a variety of problems, linear or nonlinear, static or dynamic. Technically, we
formulate our inverse problem as a PDE-constrained optimization problem. We
express both the numerical simulations and DNNs using computational graphs and
therefore, we can calculate the gradients using reverse-mode automatic differen-
tiation. We apply a physics constrained learning algorithm (PCL) to efficiently
back-propagate gradients through iterative solvers for nonlinear equations. The
open source software which accompanies the present paper can be found at

https://github.com/kailaix/ADCME.jl

1 Introduction

Inverse problems in computational engineering aim at learning physical parameters or spatially-
varying fields from observations. These observations are usually the partial output of physical
models, typically described by partial differential equations (PDEs). There is a vast array of literature
covering inverse problems with an unknown spatially-varying field in geophysics [1, 2, 3, 4], fluid
dynamics [5, 6], electromagnetism [7], etc. In these applications, observations are indirect in the
sense that they are not pointwise values of the unknown field. A standard approach is to discretize the
spatially-varying field on the grid points, which is the same as our computational grid, and estimate
pointwise values from observations. However, this approach is usually ill-posed when the dataset is
small, which is common due to expensive and challenging experiments or measurements [8, 9].

Deep neural networks (DNN) are an effective approach to provide an expressive functional form for
physical applications [10, 11]. It also provides some appropriate regularization to the optimization
problem via proper initialization and choices of architectures [12, 13, 14, 15]. In this paper, we
present the capability of ADCME for learning spatially-varying physical parameters using deep neural
networks [16, 17, 18]. In our approach, the inverse problem is formulated as a PDE-constrained
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optimization problem [19, 20, 21, 22]

min
θ

J(u) (u is indirectly a function of θ), such that F (u,Nθ) = 0

Here u is the state variable, F is the PDE constraint, andNθ(x) is the approximation of the unknown
field (x is the coordinate). The numerical solution u can be formally expressed as a function of θ and
we arrive at an unconstrained optimization problem by plugging u(θ) into J(u) (see Figure 1)

min
θ

L(θ) := J(u(θ)) (1)

Deep Neural Network PDE Solver Observation

Loss Function

Spatially-varying 
Physical Fields

Gradient Back-propagation

Forward Computation

Figure 1: Coupling a deep neural network and a numerical PDE solver.

A gradient-based optimization algorithm is used to solve Eq. 1. The major challenge is to calculate
∇θL(θ). To this end, we express both numerical simulators (e.g., finite element methods) and deep
neural networks as computational graphs. The advantage of this approach is that once we implement
the forward computation, the gradient can be calculated using reverse-mode automatic differentiation
(AD) [23, 24, 25], which is equivalent to the so-called discrete adjoint methods [26, 27, 28] for
PDE solvers. ADCME provides a framework for implementing numerical schemes as computational
graphs and incorporating deep neural networks. The computational graph operates on tensor operation
(e.g., linear solvers) or higher levels (e.g., finite element assembling); with such task granularity, we
enjoy a good balance between performance overhead from AD (e.g., reducing memory demands by
checkpointing schemes for certain operators) and development efforts.

Note that numerical simulators in ADCME are intrinsically different from traditional simulators: in
ADCME, numerical simulators are defined by specifying the dependency of many individual and
reusable operators, and these operators are equipped with gradient-backpropagation capabilities with
the implementation of efficient adjoint state methods (possibly with checkpointing schemes for saving
memories).

With the advent of experimental techniques that enable gathering large amounts of data inexpensively,
we anticipate that modeling using deep neural networks will become essential tools for data-driven
discovery. As a result, developing software platforms with AD capabilities that can be coupled with
sophisticated optimizers can be expected to have great impact on computational engineering.

2 Mathematical Model

Let us consider the Stokes problem as a concrete example. The governing equations for the Stokes
problem are [29]

−∇ · (ν∇u) +∇p = f in Ω (2)
∇ · u = 0 in Ω, u = 0 on ∂Ω

Here u : R2 → R2, p : R2 → R are state variables; ν(x) denotes the spatially-varying fluid viscosity,
which we want to estimate from observations of u or p; Ω ⊂ R2 is the computational domain, and
f ∈ [L2(Ω)]2 is the unit external volumetric force. We approximate ν(x) with a deep neural network
νθ(x), which maps the coordinate x to a scalar value. θ are the DNN weights and biases.

Another approach is to discretize ν(x) at the Gauss quadrature points or in each finite element because
only the values at Gauss quadrature points are used in the assembling procedures. Therefore, we have
a vector of unknowns {ν(xk)}, where {xk} is the collection of all Gauss quadrature points of all the
elements. To reduce the number of degrees of freedoms, we can also consider a piecewise constant
function where ν is a constant on each element.
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The weak formulation of the Stokes equation finds u ∈ [H1
0 (Ω)]2 and p ∈ L2

0(Ω) satisfying

(∇u, νθ∇v)− (∇ · v, p) = (f, v), v ∈ [H1
0 (Ω)]2

(∇ · u, q) = 0, q ∈ L2
0(Ω)

(3)

The finite element formulation using a P2/P0 (a quadratic velocity space and a pressure space of
piecewise constant) element leads to the linear system[

A(θ) −B
BT 0

] [
U
P

]
=

[
F1

F2

]
Note that the entries of A are a function of θ. In ADCME, constructing DNNs and assembling
procedures of A, B, F1, and F2 are treated as nodes in the computational graph. These procedures
are capable of back-propagating the gradients from downstream operators of the computational graph
to upstream ones. When the forward computation is defined, a computational graph is constructed
implicitly.

The numerical scheme is used to compute the discrete solution U and P , and we use (U,P ) to
compute a loss function. Because we have constructed a computational graph, we are able to calculate
the gradients by reverse-mode AD. One challenge here is that the numerical PDE solver may be
nonlinear, leading to the solution of an implicit equation. To efficiently back-propagate the gradients,
we apply the physics constrained learning method (PCL) proposed in [30] to extract the gradients.
The core idea is to use the implicit function theorem to implement the adjoint rule [31, 32].

3 Numerical Experiments

In this section, numerical examples, which cover linear and nonlinear elasticity, Stokes problems,
and Burgers’ equations, are presented to verify the effectiveness of our approach. We consider both a
regular domain (square) and an irregular domain (a plate with two holes). The hyperelasticity problem
involves nonlinearity in the numerical solver, and the Burgers’ equation involves both nonlinearity
and time stepping. As for numerical methods, the finite element method is used. For simplicity, the
observations are all discrete solutions of the state variables unless specified. The neural network is a
fully-connected deep neural network with 20 neurons per layer and 3 hidden layers. The activation
function is tanh. We use the L-BFGS-B optimizer [33] with full batches.

In what follows, we mention briefly our findings and the details of the numerical results can be
found in the appendix. We will compare two approaches. The “discretization” methods assume
that the values of ν(xk) can be optimized independently. Using our previous notations, we define
θ = {ν(xk)}k for all Gauss quadrature points xk. We also show benchmarks where ν(x) is
approximated by a constant inside each element and we may write θ = {ν(xe)}e where e is now an
element. The second approach represents the unknown function using a DNN.

We found that for discretization methods, the optimizer often leads to nonphysical solutions, i.e.,
values at some point are too large or negative, and this anomaly ends up breaking the numerical
simulator. For DNNs, we do not impose extra constraints on the outputs except that we add a small
positive values to the last layer to ensure DNNs start from a reasonable initial guess. Still, DNNs lead
to a physical solution that is close to the exact solution. In summary, DNNs were found to be more
stable and accurate than the discretization approaches in our problems.

3.1 Linear Elasticity

We consider the static linear elasticity problem on a unit square [34], where we have a spatially-
varying Young’s modulus E(x) and a Poisson’s ratio ν = 0.3. The governing equation for the linear
elasticity problem is

σij,j + bi = 0, εij =
1

2
(uj,i + ui,j), x ∈ Ω

σij = λδijεkk + µ(εij + εji), x ∈ Ω

σijnj = tj , x ∈ ΓN ; ui = (u0)i, x ∈ ΓD

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

Eν

1− ν2

(4)
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Here σij is the stress tensor, bi is the body force, ui is the displacement, ΓN ∩ ΓD = ∅, ∂Ω =
ΓN ∪ ΓD.

We approximate E(x) using a deep neural network. The results are shown in Figure 2. As a
comparison, we also show results where we represent E(x) as a discrete vector of trainable variables.
We call this the “discretization” approach. We found that it did not work without imposing constraints
on the trainable variables. In our experiment, the trainable variables were transformed from Ei to
|Ei| (positivity constraint), where Ei is the estimated E(x) on the i-th Gauss points. Despite this, we
can see that the DNN approach provides a better result that the discretization approach.
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Figure 2: Convergence result for the static linear elasticity problem after 10,000 iterations. For the
discretization methods, we see we have some large errors at the lower left corner and top right region,
and these anomalies break the numerical solver. The optimizer stops after 981 iterations. Note that
the scales for the second and third plots are different.

3.2 Stokes Problem

The next problem considered is the Stokes problem Eq. 2. The finite element formulation of the
Stokes problem leads to a linear system, but has an extra pressure field compared to the linear
elasticity problem. We assume that only the pressure field is known and we use this information to
solve inverse problem.

We make ν(x) a spatially-varying field. We were not able to obtain convergence result using the
discretization approach even after imposing bound constraints on the trainable variables. This
indicates that the inverse problem is quite ill-conditioned. The result for DNN is shown in Figure 3.
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Figure 3: Convergence result for the Stokes problem after 600 iterations. For the discretization
methods, the estimation did not converge to the correct results.

3.3 Hyperelasticity

The hyperelasticity problem can be described as an energy-minimization problem. We consider a
common neo-Hookean energy model [35] and assume that the Young’s modulus E(x) is a spatially-
varying unknown field. The Lamé parameters are defined by the Young’s modulus E and Poisson
ration ν:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

Using the finite element method to solve the energy-minimization problem leads to a nonlinear
equation. The forward computation typically involves a Newton-Raphson iteration. To back-propagate
the gradient through the nonlinear numerical solver, we applied the physics constrained learning to
the Newton-Raphson solver.
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We let the Young’s modulus E(x) be an unknown spatially-varying field. Figure 4 shows the result.
We see for this problem, the discretization approach provides an estimate that is close to the exact
solution, and the corresponding loss function decays much faster than DNNs. However, the learned
E(x) field is not as smooth as DNNs and the maximum pointwise absolute error is much larger than
DNNs.
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Figure 4: Convergence result for the hyperelasticity problem after 10,000 iterations. For the dis-
cretization method with piecewise constants, we use the prediction obtained at the 2,740th iteration,
at which point the optimizer terminated.

3.4 Burgers’ Equation

The final example aims to demonstrate the capability of our algorithm for solving time-dependent
nonlinear problems. We consider the Burgers’ equation [36] with a spatially-varying viscosity
parameter ν(x).

We use the finite element method to discretize the Burgers’ equation spatially and apply an implicit
time integrator. This results in a time marching scheme, in which a nonlinear equation needs to be
solved in each iteration. The physics constrained learning is used to solve the nonlinear equation.

We make ν(x) a spatially-varying field and apply both the DNN and the discretization approach
to learn the physical field. The result is shown in Figure 5. Due to the ill-posedness of the inverse
problem and lack of spatial correlation for the discretized ν, we were not able to obtain convergence
result with the discretization approach if we use a constant initial guess. To this end, we initialize the
discretization using a field that is close to the exact field.1 Even with this impractical approach, the
estimation is not as accurate as DNNs.
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Figure 5: Convergence result for the Burgers’ equation after 60 iterations (DNN) and 16 iterations
(the Discretization Method). The optimization terminates at these iterations due to satisfying the
stopping criterion.

4 Conclusion

We have presented the capability of ADCME for learning spatially-varying physical parameters using
deep neural networks. We showed that the DNN approach gives us a much more accurate solution
compared to the traditional discretization approach in the small data regime. In our approach, both
numerical simulators and deep neural networks are expressed as computational graphs, and thus
gradients can be back-propagated algorithmically once the forward computation is implemented. Par-
ticularly, for nonlinear solvers, we apply the physics constrained learning approach to back-propagate
the gradients. The preliminary results on several PDE examples demonstrate the effectiveness of our
approach. Note that the present work relies on an optimizer for a highly nonconvex problem and the
well-posedness of the optimization problem, both of which remain elusive. We plan to investigate
this direction further and develop a diagnosis toolbox in the future.

1Other techniques, such as filtering [37], can also be used for improving the discretization method.
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Broader Impact

This work allows developing more accurate mathematical models based on experimental data or
based on a model developed at a finer scale (e.g., molecular scale). Advances in this paper will enable
cheaper and more accurate computational models for a broad range of engineering and scientific
applications. Computer simulations of engineering and physical systems are keys in many areas,
including optimization, control, imaging, and failure analysis. Developing sophisticated computer
models allows making accurate predictions for complex systems without having to resort to expensive
experiments. Advances in sciences and engineering have a wide range of impacts on society, which
are, for the most part, positive, such as transportation, energy, communication, and medicine, but, in
some cases, may be harmful such as pollution and global warming or when applied to the development
and production of weapons.
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