

Swiss Plasma Center

Detection of plasma confinement states in the TCV tokamak

NeurIPS 2020

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland; ² Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany; ³ Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands; ^a See author list of "S. Coda et al 2019 Nucl. Fusion 59 112023"; ^b See author list of "B. Labit et al 2019 Nucl. Fusion 59 086020" First author e-mail: gino.marceca@epfl.ch

Machine Learnng and the Physical Sciences workshop

Introduction

- - H_{alpha}[a.u] n_{e-UD} FIR[m⁻²] time [s]

Real time signals measured by TCV diagnostics

- The validation and construction of the database is done using the *DIS_tool* interface which allows domain experts to easily label each time step of a discharge as being in L, D or H mode.
- Labelling is a time consuming process which requires many iterations and consensus across different experts, where disagreement (in particular for the D modes) is typical.
- Accurate ML models can automatize this process and help in the production of large and consistent DBs across different existing Tokamaks.

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Swiss Plasma Center

G. Marceca¹, F. Matos², A. Pau¹, F. Felici¹, V. Menkovski³, the TCV Team^a and the EUROfusion MST1 Team^b

EUROfusion

Settings PDch

[A. Pau FED 2017]

RUN DEL ADD DIS

WRITING IN

Encoder-Decoder neural networks to detect plasma confinement states

Evaluation metric: Cohen's Kappa-statistic (κ) measures	κ scores		L	D	Н	Mean
the agreement between two sets of categorical data	CNN-LSTM (dataset [1])	Train Test	0.96 0.82	0.89 0.77	0.97 0.85	0.96 0.83
(ground truth vs model predictions).	CNN-LSTM	Train Test	0.98 0.92	0.91 0.78	0.98 0.91	0.98 0.90
$\kappa = \frac{p_0 - p_e}{1 - p_e}, \qquad p_e = \frac{1}{N^2} \sum_{k=1}^3 n_{k1} n_{k2} = \text{prob of random agreement}$	seq2seq	Train 5-CV	$\begin{array}{c} 0.99\\ 0.97\pm 0.01\end{array}$	$\begin{array}{c} 0.99\\ 0.89\pm 0.03\end{array}$	$\begin{array}{c} 0.99\\ 0.98\pm 0.01\end{array}$	$\begin{array}{c} 0.99\\ 0.97\pm 0.01\end{array}$
		Test Train	0.94 • 0.99	0.86 0.98	0.96 0.99	0.94 0.99
$p_0 = accuracy, n_{ki} = \#$ times set <i>i</i> predicted category <i>k</i>	UTime	5-CV Test	0.97 ± 0.01 0.94	0.88 ± 0.04 0.89	0.97 ± 0.01 0.96	0.97 ± 0.01 0.95

Conclusions and next steps

- Two models based on an encoder-decoder architecture were developed to detect plasma confinement states in TCV.
- The existing TCV database of plasma states was highly extended and refined based on a consensus of expert knowledge.
- Thanks to both, the new database and the models, results surpassed by ~10% previous ones based on an CNN-LSTM model.
- As next steps we will rely on TL to deliver extensive and consistent databases for other machines. We will also implement the seq2seq model in the real-time control system and predict the confinement degradation as a disruption precursor.

