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Abstract

A key challenge in searches for resonant new physics is that classifiers trained
to detect and enhance potential signals must not induce localized structures, i.e.
they must not sculpt a peak in an otherwise smooth background spectrum. Such
structures could result in a false signal when the background is estimated from
data using sideband methods. A variety of techniques have been developed to
construct classifiers which are independent from the resonant feature (often a mass).
Such strategies are sufficient to avoid localized structures, but are not necessary.
We develop a new set of tools using a novel moment loss function (Moment
Decomposition or MODE) which relax the assumption of independence without
creating structures in the background. By allowing classifiers to be more flexible,
we enhance the sensitivity to new physics without compromising the fidelity of the
background estimation.

1 Introduction

Searching for new phenomena associated with localized excesses in otherwise featureless spectra,
often referred to as bump hunting, is one of the most widely used approaches in particle and nuclear
physics. A key feature of these searches is that they are relatively model-agnostic since sidebands in
data can be used to estimate the background under a potential localized excess. These sideband fits
are possible because the background data can be well-approximated either with simple parametric
functions or smooth non-parametric techniques such as Gaussian processes [1]. Sideband methods for
background estimation are often combined with relatively simple and robust event selections in order
to ensure broad coverage. However, there is a growing use of modern machine learning to enhance
signal sensitivity [2, 3, 4, 5, 6]. For example, both ATLAS [7] and CMS [8] have developed W jet
taggers using deep learning models to improve the sensitivity of searches involving Lorentz-boosted
and hadronically decaying W bosons.

A key challenge with complex event selections like those involved in boosted W tagging is that they
can invalidate the smoothness assumption of the background. In particular, if classifiers can infer the
mass of the parent resonance, then selecting signal-like events will simply pick out background events
with a reconstructed mass near the target resonance mass. Many techniques have been developed
that modify or simultaneously optimize classifiers so that their responses are independent of a given
resonance feature. For machine learning classifiers, the proposed solutions include modifications to
loss functions that implicitly or explicitly enforce independence. A variety of similar proposals under
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the monikers of domain adaptation and fairness have been proposed in the machine learning literature
(see e.g. Ref. [9, 10] and Ref. [11, 12]).

Ensuring that a classifier is independent from a given resonant feature is sufficient for mitigating
sculpting, but it is not necessary. The original requirement is simply that a selection using the
classifier does not introduce localized features in the background spectrum, which is a much looser
requirement than enforcing independence. For example, if a classifier has a linear dependence on
the resonant feature, then there would be a strong correlation. However, a threshold requirement on
such a classifier would not sculpt any bumps in the background-only case. This example motivates a
new class of techniques that allow classifiers to depend on the resonant feature in a controlled way.
In the limit that constant dependence is required, then the classifier and the resonant feature will be
independent. The advantage of relaxing the independence requirement is that the resulting classifiers
can achieve superior performance because they are allowed to be more flexible.

We present a new set of tools that allow for controlled dependence on a resonant feature.This new
approach is called Moment Decomposition or MODE (see Ref. [13] for more details.) Using MODE,
analysts can require independence, linear dependence, quadratic dependence, etc. In addition, analysts
can place bounds on the slope of the linear dependence, and restrict quadratic dependence to be
monotonic.

2 Methods

2.1 Existing decorrelation methods

We will consider the binary classification setting in which examples are given by the triplet (X,Y,M),
where X ∈ X is a feature vector, Y ∈ Y := {0, 1} is the target label, and finally, M ∈ M is the
resonant feature (or protected attribute) whose spectrum will be used in the bump hunting. The
feature vector X can either contain M directly as one of its elements or contain other features that are
arbitrarily indicative of M . Decorrelation methods are interested in finding a mapping f : X → S
where s ∈ S are scores used to obtain predictions ŷ ∈ Y with the additional constraint that f be
conditionally independent of (or uniform with) M in the sense that

p(f(X) = s|M = m,Y = y) = p(f(X) = s|Y = y) ∀ m ∈M and ∀ s ∈ S, (1)

for one or more values y, e.g., independence could be required for the background, the signal, or both.
Decorrelation methods include planing [14, 15], adversaries [16, 17, 18, 19], distance correlation
(DISCO) [20, 21], and flatness [22].

2.2 Beyond decorrelation: Moment decomposition

Rather than decorrelation, our method allows for controllable mass dependence in the form of an `th
order polynomial, where ` is a hyperparameter chosen by the analyst. The total loss is

L[f ] = Lclass + λL`MODE, (2)

where λ is a tradeoff paramter, Lclass[f ] is some classification loss (e.g., cross-entropy) and the
MODE loss is given by

L`MoDe ≡
∑
m

∫
|Fm(s)−

∑̀
i=0

ci(s)Pi(m̃)|2ds, (3)

where a transformation is performed on m such thatM→ [−1, 1]. Here, Fm(s) is the conditional
cumulative distribution function of scores, s, in mass bin m (central mass value m̃), Pi are the
Legendre polynomials, and the Legendre moments are given by

ci(s) =

[
2i+ 1

2

] ∫ 1

−1
Pi(m

′)F (s|m′)dm′. (4)

The MODE loss in Eq. (3) (which we will denote by MODE[`]) is optimal when Fm(s) is an `th order
polynomial ∀ s. It can be shown that the minimizer for ` = 0 satisfies the independence condition
in Eq. (1). More interestingly, choosing ` = 1 leads to linear mass dependence, ` = 2 quadratic
dependence, etc.
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3 The boosted W tagging challenge

Highly lorentz boosted, hadronically decaying W bosons commonly arise in extensions of the
Standard Model. The boost causes the decay products of these bosons to be mostly captured by a
single large-radius jet. Various features of the substructure of these jets can be used to distinguish the
boosted bosons from generic quark and gluon jets.

A bump hunt is performed either in the mass of the W candidate jet, mJ , or the mass of one W
candidate jet and another (possiblyW candidate) jet,mJJ . The challenge with substructure classifiers
is that they can introduce artificial bumps into the mass spectrum because substructure is correlated
with the jet mass and the jet kinematic properties (which are related to mJJ ). For this reason, boosted
W tagging has become a benchmark process for studying decorrelation methods at the LHC.

The mass of the simulated samples used in this section and shown in the left of Fig. 1 is the same as in
Ref. [20] (intended to emulate the study in Ref. [23]). An implementation for MODE in PyTorch as
well as Tensorflow/Keras is available at https://github.com/okitouni/MoDe, along with other
examples.

3.1 Classifier Details

MoDe and DisCo: We use a simple 3-layer neural network with a similar architecture to that
described in Ref. [20]. However, unlike Refs. [20] and [23], after each of the 3 fully connected
64-node layers, we use Swish activation [24] as it provides a notable performance increase. We also
use a batch normalization layer after the first fully connected layer. The output layer has a single
node with a sigmoid activation. Both MODE and DISCO are trained with the ADAM optimizer [25]
using a 1cycle learning rate policy [26] with a starting learning rate of 10−3 and a maximum learning
rate of 10−2, which is reached using a cosine annealing strategy [27] and decayed to 10−5 during the
last few iterations. Momentum is cycled in the inverse direction from 0.95 to a minimum of 0.85.
These hyperparameters were selected through a learning rate range test.

Adversarial Decorrelation: The same classifier used for MODE and DisCo is trained against a
Gaussian Mixture Network (GMN) [28] that parametrizes a Gaussian mixture model with 20 compo-
nents, i.e. its outputs are the means, variances, and mixing coefficients of 20 normal distributions.
We follow a similar adversarial setup to that referenced in Refs. [23] and [20]. We use one hidden
layer with 64 nodes with ReLu activation connected to 60 output nodes. These outputs model the
posterior probability density function p(M |f(X; θclass)) which is used to define the adversarial loss
Ladv = Es∼f(X)Em∼M |s [− log pθadv(m|s)] where θclass and θadv are the classifier and adversary
parameters, respectively. Decorrelation is obtained by finding the minimax solution to

arg min
θclass

max
θadv

[
Lclass(θclass) − λLadv(θclass, θadv)

]
.
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Figure 1: Left: (True) distributions of signal and background events. Right: Distributions of events
predicted to be backgrounds at 50% signal efficiency (true positive rate) for different classifiers. The
unconstrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.
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3.2 Example Results

The left of Fig. 1 shows the signal and background distributions, while the right shows that, as
expected, without imposing a strong constraint on mass decorrelation, the classifier learns to select
samples near the W -boson mass, which sculpts a fake peak in the background.

Following Ref. [20], we quantify the classification performance using the background rejection factor,
R50, which is defined as the inverse false positive rate at 50% signal efficiency (true positive rate.)
To assess the danger of sculpting a peak, we use the signal bias induced by the classifier selection,
which is what actually matters when searching for resonant new physics.

Specifically, we use the signal estimators obtained by fitting samples of backgrounds classified as
signal (false positives) to a simple polynomial function as proxies for the signal biases. The maximum
likelihood estimators ŝ obtained for different samples are divided by their uncertainties such that
values of roughly unity are consistent with no bias (since the true signal rate is zero), while values
significantly larger than unity indicate substantial bias that could result in false claims of observations
or invalid confidence intervals on observed W -boson rates.

Figure 2 shows that the DisCo and MODE[0] decorrelation methods provide signal estimators that
are consistent with the true value of 0 for R50 . 9. Figure 2 also shows that the flexibility to go
beyond decorrelation provided by MODE[1] and MODE[2] results in achieving unbiased signal
estimators at larger background-rejection power. This would directly translate to improved sensitivity
in a real-world analysis.

4 Conclusions and Outlooks

In summary, a key challenge in searches for resonant new physics is that classifiers trained to enhance
potential signals must not induce localized structures. We presented a new set of tools using a
novel moment loss function (Moment Decomposition or MODE) which relax the assumption of
independence from a resonant feature (often a mass) without creating structures in the background.
Using MODE, analysts can require independence, linear dependence, quadratic dependence, etc.
By allowing classifiers to be more flexible, we enhance the sensitivity to new physics without
compromising the fidelity of the background estimation. In addition, our method is simple, fast (more
details are in Ref. [13]) and requires no further training (unlike adversaries which are notoriously
difficult to train) and introduces only one hyperparameter (the number of m bins to use) in addition
to the decorrelation-classification tradeoff parameter λ.
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Figure 2: Signal bias (zero is ideal) relative to resolution versus background-rejection power (larger
is better.) The flexibility beyond simple decorrelation provided by MODE[1] and MODE[2] results in
improved performance. i.e. classifiers have better classification power and introduce no signal bias.
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Broader Impact

While the MODE loss proposed here was developed for particle physics, it can be applied to fairness
and explainability in AI problems in a variety of fields. This can lead to increased transparency of
machine learning models and strengthened trust in their use. One example would be to develop a
disease risk model for individual patients with a monotonic dependence on age despite a non-trivial
age dependence of the the input features. Furthermore, using the MODE loss as a decorrelation
method can decrease discrimination against protected groups in decisions ranging from issuing job
offers to granting prison parole. Finally, the MODE loss can make modelling tasks simpler and their
solutions more sensitive in other scientific domains, leading to heightened output.
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