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Abstract

We apply deep reinforcement learning to active closed-loop control of a two-
dimensional flow over a cylinder oscillating around its axis with a time-dependent
angular velocity representing the only control parameter. Experimenting with the
angular velocity, the neural network is able to devise a control strategy based on
low frequency harmonic oscillations with some additional modulations to stabilize
the Kármán vortex street at low Reynolds number Re = 100 leading to the drag
reduction of 14%. The additional efforts are very low as the maximum amplitude
of the angular velocity does not exceed 10% of the incoming flow. A detailed
comparison with a flow controlled by harmonic oscillations with one frequency
and a fixed amplitude are presented highlighting the necessity of a feedback loop.

1 Introduction

A well-known Kármán vortex street is typically formed in the wake of the flow over a bluff body
exerting an oscillating value of the force [1]. This unsteadiness may cause structural damages due to
the coupling of the body vibrations and pressure fluctuations of the fluid. Over time a large number
of flow control strategies are proposed to influence and suppress these unwanted dynamical features
[2]. The overall classification includes passive and active methods due to the possible energetic input
to the flow [3]. Active methods represent open- and closed-loop control depending on the presence of
a feedback from sensors to actuators with a further update of a control signal. An appealing way to
design new closed-loop control strategies is to rely on the so-called data-driven and learning-based
methods which lately receive well-deserved attention [4].

In fluid dynamics machine learning techniques have been fruitfully applied to the issue of the
turbulence closure modelling within Large-eddy simulations and Reynolds-averaged Navier–Stokes
equations, reconstructing flow fields, recovering dynamical features and control [4]. A promising
way to devise new control strategies is a combination of multilayer (deep) neural networks combined
with the reinforcement learning (RL) strategy [5] resulting in a deep reinforcement learning (DRL)
paradigm succeeding in a large number of problems [6]. RL represents a self-learning strategy
introducing an agent who interacts with the environment through particular actions in order to
get a maximum reward. Recent examples consider the manipulation of the flow over a cylinder
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Figure 1: A rotary oscillating cylinder in a cross-flow with a coordinate system.

using multiple synthetic jets and numerical simulations at low Reynolds numbers delivering robust
DRL-based control strategies [7-8].

In this work we study a closed-loop control strategy for the flow over a cylinder rotating around
its axis with the time-dependent angular velocity being the only control parameter while in the
mentioned papers [7-8] flow control was implemented using synthetic jets on a fixed cylinder. We
employ the direct numerical simulations (DNS) of the Navier–Stokes equations at low Reynolds
number Re = 100 and apply the DRL method which relies on the Proximal policy optimization
algorithm [9] maximizing the expected reward. The reward value is based on the lift and drag forces
acting on the cylinder with the neural network employing the information on the pressure field in
the wake region. The particular focus of the work is on the deviation of the control signal from the
intuitive one typically considered as harmonic oscillations.

2 Problem formulation and computational details

We consider a cylinder of the diameter D in a fluid cross-flow with a uniform incoming velocity
U∞, see Fig. 1. The considered Reynolds number Re = U∞D/ν = 100 represents the flow
regime with a Kármán vortex street behind the bluff body, where ν is the kinematic viscosity. The
applied control strategy is based on the rotation of the cylinder around its axis with the wall velocity
Uw(t) = U∞Ω(t). The primary goal is to find the optimal signal Ω(t) to influence drag and lift
coefficients:

CD =
2Fx

ρU2
∞
, CL =

2Fy

ρU2
∞
, (1)

where Fx and Fy are the drag and lift forces acting on the cylinder per unit length and ρ is the fluid
density.

2.1 Flow computations

To describe the flow field we solve the non-dimensional incompressible Navier–Stokes equations:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

,
∂uj
∂xj

= 0, (2)

where ui and p are the velocity components and pressure field and all quantities are non-
dimensionalized using U∞ and D. The configuration is considered in a two-dimensional setup
with the coordinate system located in the center of the cylinder and x, y representing the streamwise
and vertical coordinates, respectively. The computations are performed using an open-source un-
structured finite-volume code T-Flows [10] below referred to as the CFD solver. The computational
domain represents a rectangle of the size Lx × Ly = 30D × 20D with the center of the cylinder
placed 10D from the inlet boundary. The slip condition is set at the top and bottom boundaries and
convective outflow condition is prescribed at the outlet, while control law representing the tangential
velocity of the cylinder wall is described below. The mesh contains 15140 hexahedral cells while
the computational timestep is ∆tCFD = 10−2. We validate the results of the stationary cylinder
case. The typical quantities of interest are the time-averaged drag coefficient CD = 1.33 and vortex
shedding frequency fvs = 0.17 which are in excellent agreement with the data from the literature [1].

2.2 Machine-learning architecture and feedback loop

Below we describe a set of algorithms employed to obtain the angular velocity signal Ω(t) with the
closed-loop controller synthesized by training a fully connected neural network (FNN). The optimal
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Figure 2: Active closed-loop flow control optimization scheme.

control strategy evaluation relies on the Reinforcement learning (RL) approach [5] and a Policy
gradient (PG) algorithm [9] with a maximization of a defined reward function. A schematic view of
optimization of the feedback control system is shown in Figure 2. In RL the environment representing
the CFD solver interacts with the agent which is the FNN controller in our case. The agent takes a
new action based on the current state of the environment representing the data from 4× 3 array of
pressure sensors placed in the near wake behide the cylinder, see ‘inputs’ and the flow schematics in
Figure 2. The FNN has two hidden layers with 64 neurons each and a single output for the mean of
the policy PDF of the cylinder angular velocity during evaluation of the controller. However, training
employs two networks of the similar structure for policy and value prediction including a trainable
dispertion coefficient of the policy PDF for a smooth transition from exploration to exloitation of the
learnt policy. The number of neurons was determined experimentally obseving the learning speed
and the mean reward after convergence with a fixed number of inputs and the reward function. The
neurons in the hidden layers used the sigmoidal activation function while the activation of the output
neuron was linear. The action defined the next value of Ω which was put forward to the CFD solver
with a specific relaxation procedure in time. The action time step Tac was set small enough compared
to the characteristic time scale Tvs = 1/fvs of the vortex shedding according to recommendations
[7]. We employed the value Tac ≈ 0.05Tvs with Tac = 30∆tCFD = 0.3. After receiving a new
target value of Ω, the angular velocity of the cylinder was updated from the old value to a new target
one linearly in time within the whole interval Tac. We performed additional tests with the exponential
relaxation scheme [7] as well as step-like change of Ω, however, a better behaviour of the linear one
for a test harmonic control law was observed. Typical learning process required full four days with
over a hundred thousand action steps made in parallel using three vectorized environments locally
on a PC with 24 cores in total. The convergence was reached after three days of training with near
eight thousand control steps. As a parameter for the control optimization algorithm we chose the
learning rate constant of the value 3× 10−4, clip parameter ε = 0.2, GAE parameters with discount
rate γ = 0.99 and λ = 0.95, value coefficient c1 = 0.5, entropy coefficient c2 = 0.01 [9]. The
instantaneous reward value was parametrized in the following form:

r = R1 − (〈CD〉ac +R2|〈CL〉ac|), (3)

where the drag and lift coefficients were averaged over the action time step. For convenience the
constant R1 was chosen so that the reward values per action are close to zero. The non-zero constant
R2 constrained the non-zero time-averaged lift leading to the asymmetric flow regimes. With R2 = 0
in the long run the control law tends to return a rotating regime. We chose the final values as R1 = 3
and R2 = 0.1 [7].

3 Results and discussion

The training process required at least 80 epochs, i.e. the intervals between control actions resulting in
the overall time interval of near 35000 time units in terms of D/U∞. The evolution of the reward
value averaged over the action time step 〈r〉ac reached the saturation after around 50 epochs while the
entropy function decreased monotonically. After the training process the performance of the neural
controller was evaluated. Figure 3 shows the instantaneous streamwise velocity field around the
cylinder for the case without control and after 80 time units we applied the DRL-based scheme which
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is enough to reach a new steady state. As a result the flow stabilizes with a small rotational input
trying to balance this inherent instability. The length of the recirculation bubble becomes larger with
the local pressure minimum moving further downstream. This leads to a smaller pressure difference
between the front and rear of the cylinder with a final decrease of CD.

Figure 4 shows the evolution of several characteristics such as the angle of a certain point on the
surface of the cylinder θ, angular velocity Ω, drag and lift coefficients CD and CL for different flow
regimes. The case of a stationary cylinder is demonstrated as a reference one with θ = Ω = 0. The
drag coefficient exhibits sinusoidal behaviour with a frequency 2f0 around a time-averaged value
CD = 1.33 while CL fluctuates with a natural frequency f0 = 0.17 reflecting the vortex shedding
process as mentioned above. The application of the DRL-scheme for control leads to a transient period
of about 20 time units resulting in modulated harmonic signal of the angular velocity Ω. However,
the angle θ also evolves sinusoidally in time with a linear trend of a very small slope corresponding
to a negligible rotation angular velocity in one direction. Note that the Fourier spectrum of the CL

signal shows the main peak at a frequency f ≈ 0.6f0 with small secondary peaks at higher and lower
frequencies giving room for modulations of Ω. These modulations turn out to be essential for a drag
reduction which is demonstrated in a straightforward manner. We apply a harmonic forcing to the
cylinder with Ω = Ω0 sin(2πft) where f = 0.6f0, Ω0 = 0.08 well approximates the signal from
a DRL-scheme. The outcome of this control strategy is a slight decrease of CD = 1.29 compared
to the stationary case and is far from a DRL-scheme CD = 1.15 (-14% from the case with the
fixed cylinder). Thus, the feedback loop is indeed gives a benefit for active flow control correctly
responding on the instantaneous phase of the vortex shedding process by tuning the angular velocity
of the cylinder to stabilize the wake and decrease the drag.

4 Conclusion

We applied deep reinforcement learning to active closed-loop control of a two-dimensional flow
over a cylinder oscillating around its axis with a time-dependent angular velocity representing the
only control parameter. Probing different values of the angular velocity, the neural network was
able to create a control strategy based on low frequency harmonic oscillations with some additional
modulations to stabilize the Kármán vortex street at low Reynolds number Re = 100 leading to
the drag reduction of 14% comparable with a state-of-the-art control theory optimization routines
based on adjoint methods. The additional input of energy to rotate the cylinder was very low as the
maximum amplitude of the angular velocity did not exceed 10% of the incoming flow. A detailed
comparison with a flow controlled by harmonic oscillations with one frequency and a fixed amplitude
were presented highlighting the necessity of a feedback loop.

Broader Impact

The results of this research may be interesting for development of new transportation and energy
systems with an intelligent active flow control in case the approach can be adapted for realistic flow
conditions, i.e. turbulent flows with higher Reynolds numbers, and significant nonlinear effects is of
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Figure 3: Typical instantaneous streamwise velocity field with streamlines. Left: stationary cylinder.
Right: DRL-based flow regime after 80 time units of control. The array of 4 × 3 white points
corresponds to pressure sensors serving as the input for the neural network, see Figure 2.
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Figure 4: Rotation angle and angular velocity (left) with the drag and lift coefficients (right). Three
flow regimes are shown, i.e. the stationary cylinder (blue line), with a DRL-scheme for control (red),
forced with harmonic oscillations with Ω(t) = Ω0 sin(2πft) where Ω0 = 0.08, f = 0.6f0 (green
line).

particular interest as it is difficult to account by the conventional linear control over a wide range of
parameters. Currently, direct neural controllers are almost not used in industrial systems, since their
stability and reliability have not been proven. This can lead to a possible accident if used without
adequate accident prevention systems.
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