
Approximate Bayesian Geophysical Inversion using
Generative Modeling and Subset Simulation

Eliane Maalouf
University of Neuchâtel

Neuchâtel, CH 2000
eliane.maalouf@unine.ch

David Ginsbourger
University of Bern

Bern, CH 3012
david.ginsbourger@stat.unibe.ch

Niklas Linde
University of Lausanne

Lausanne, CH 1015
niklas.Linde@unil.ch

Abstract

We present preliminary work on solving geophysical inverse problems by exploring
the latent space of a joint Generative Neural Network (GNN) model by Approx-
imate Bayesian Computation (ABC) based on Subset Simulation (SuS). Given
pre-generated subsurface domains and their corresponding solver outputs, the GNN
surrogates the forward solver during inversion to quickly explore the input space
through SuS and locate regions of credible solutions. Akin to ABC methods, our
methodology allows to tune the similarity threshold between observed and can-
didate outputs. We explore how tuning this threshold influences the uncertainty
in the solutions, allowing to sample solutions with a selected diversity level. Our
initial tests were carried out with data from straight-ray (linear) tomography with
Gaussian priors on slowness fields and Gaussian versus Gumbel observation noise
distributions. We are presently testing the methodology on non-linear physics to
demonstrate its applicability in more general inversion settings.

1 Introduction

In geophysics, cross-hole Ground Penetrating Radar (GPR) sources are used to emit high-frequency
electromagnetic waves at different locations in one borehole that are recorded by receivers at different
locations in another borehole. The first-arrival travel times of waves that travel through the subsurface
between the boreholes are then determined from the recorded traces. Cross-hole GPR tomography
relies on such noise-contaminated measurements to retrieve the slowness field (i.e. inverse of the
velocity field) of the geophysical domain (hereafter denoted by “domain”).

Bayesian inference treats the unknown field as random and provides access to its posterior distribution
given the observed measurements and a priori assumptions. Markov Chain Monte Carlo (MCMC)
methods are widely used to explore analytically intractable posterior distributions through sampling
[12]. One crucial aspect to guarantee the convergence of MCMC to the true posterior distribution is to
use a likelihood function reflecting correct assumptions on both the considered physical phenomenon
and the observation noise distribution. Gathering realistic information on the noise can be a hard
task, and for convenience, it often appears as a default choice to employ likelihood functions relying
on Gaussian or other simple noise distribution assumptions. Likelihood free methods such as
Approximate Bayesian Computation (ABC) algorithms avoid the specification of the likelihood
function by means of simulations from an approximate posterior [5]. Given the simulation nature of
ABC, it requires sampling from the domain space followed by forward simulations on those samples.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.

A sample is accepted if the simulator output differs from the measurement of interest by a distance
limited by a tolerance parameter. Hence, standard ABC becomes very expensive when the forward
simulator is expensive to evaluate and the tolerance threshold is small. Furthermore, the efficiency
of ABC algorithms depends on the proposal distribution as we want more mass around samples
that yield simulator outputs close to the measurements. In the absence of a priori information about
these locations in the domain space, adaptive sequential ABC methods [11] [2] allow to sequentially
improve the proposal distribution to better locate and target these regions.

In this context, we apply a new simulation-based method, which avoids expensive frequent calls to
the simulator. The methodology leverages Generative Neural Networks (GNN) to learn the joint
distribution between the subsurface domains and their simulator outputs. We explore the solutions to
an inverse problem given a noisy measurement vector by sampling in the latent space of the GNN.
The ABC sampling scheme is based on Subset Simulation (SuS) [1]. We replace all calls to the
simulator during inversion by evaluations from the GNN model. Moreover, we illustrate how tuning
the tolerance parameter influences the diversity/uncertainty in the solutions.

Related works have used GNN for dimensionality reduction of the domain space through the latent
space [3], [6], [10] followed by MCMC sampling on the latent space. Others aimed to learn a direct
conditional map from the measurements space to the domain space [4], [7]. The first approach still
requires frequent calls to the expensive forward solver. The second, if not generative, performs
uncertainty estimation in an ad-hoc manner.

2 Methodology

We denote by X , Y , defined on spaces X, Y, the variables representing the subsurface domain and
the response of interest, respectively. We assume first that X is linked to Y by Y = F (X) + E with
E a noise variable with a distribution that is not known a priori, and F expresses the physics of the
problem encoded by the simulator. We further assume that both X and Y can be expressed as a
function of some latent variable Z ∈ Z, where Z is of moderate dimension compared to X and Y,
such that (X,Y) = Go(Z) = (go1(Z), go2(Z)). Setting a prior distribution on Z, Go is a generative
function of couples (X,Y). The considered inverse problem consists in retrieving a distribution of
subsurface domains having potentially generated a given vector of measurements yobs.

Phase I - Joint Generative Neural Network training Relying on a sample of couples (X,Y),
we estimate the map Go by training a joint GNN model. We adapted the Wasserstein Auto-Encoder
(WAE) [14] and its Sinkhorn Auto-Encoder (SAE) variant [9] to the task of learning the joint
distribution P(X,Y). The previously introduced X and Y variables are the inputs to the encoder and
we denote by X̃ and Ỹ the outputs of the decoder/generator (cf. Figure 1). The WAE training aims to
minimize the Wasserstein distance [15] between P(X,Y) and P(X̃,Ỹ). With deterministic encoder and
decoder networks, all the randomness in (X̃, Ỹ) is contained in Z.

The training consists in minimizing an empirical version of

min
G

min
Q

EXY∼P(X,Y)
[||X − g1(Q(X,Y))||pp + ||Y − g2(Q(X,Y))||pp]] + λWp(QZ , PZ),

with respect to G and Q, where ||.||p stands for the lp norm on the considered spaces (X and Y
typically assumed to be finite-dimensional) and λ > 0 is a penalty coefficient. This loss function
balances the objectives of reconstructing the training data accurately, on the one hand, and minimizing

Figure 1: Schematic of the Encoder-Decoder architecture adapted to joint distribution learning

2

on the other hand a p-Wasserstein distance (i.e. Wp) between the induced distribution on Z (i.e. QZ)
by the encoder and some prescribed prior distribution (i.e. PZ) on Z. Once the GNN is trained, we can
cheaply generate couples (X̃, Ỹ) by sampling from the prior on Z and passing those samples through
the decoder networks, denoted for simplicity here and in the following by g1, g2 (cf. Figure 1).

Phase II - Inversion by Subset Simulation We now consider a measurement vector yobs from
which we want to retrieve a distribution of subsurface domains having potentially generated it. The
goal in this phase is to first, explore the region of Z yielding values of g2 close to yobs and, second,
transform sampled elements from this region back into X via g1.

Let Γε = {z ∈ Z : d(g2(z), yobs) ≤ ε} with d(., .) a dissimilarity on Y (here we take the squared
l2 distance on Y rescaled by dim(Y)) and ε > 0 a tolerance parameter. Furthermore, let πZ
stand for the prior density of Z (with respect to Lebesgue or some other dominating measure on
Z). We consider here a surrogate posterior density on Z (given yobs) defined by πZ|Z∈Γε(z) ∝
1Γε(z)πZ(z). Depending on the choice of ε and other problem settings such as the dimension of
Z, {Z ∈ Γε} may become a rare event to simulate. We use SuS [1], a rare event sampler, as an
adaptive sampler in ABC [2] to sample from πZ|Z∈Γε . SuS introduces a decreasing sequence of
thresholds +∞ = t0 > t1 > t2... > tm = ε which determines a sequence of nested subsets of
Z, Γt` = {z ∈ Z : d(g2(z), yobs) ≤ t`}(` = 0, ...,m). For the sequence of events {Z ∈ Γt`}
we have that : P (Z ∈ Γε) = P (Z ∈ Γt0)

∏m
`=1 P (Z ∈ Γt` |Z ∈ Γt`−1

) with P (Z ∈ Γt0) = 1
since {Z ∈ Γt0} is certain. This reduces the problem of estimating the small pε = P (Z ∈ Γε) to
estimating a sequence of larger conditional probabilities P (Z ∈ Γt` |Z ∈ Γt`−1

).

The SuS algorithm starts with an initial sample from the prior of Z, {Z(0)
i }Ni=1, with a predefined

size N . The dissimilarity values {d(g2(Z
(0)
i), yobs)}Ni=1 are calculated and ordered and the first

threshold t1 is defined as the α-percentile of those values. α is prescribed and typically chosen in
the range [0.1, 0.3] [17]. The set Γt1 is first populated by the observations from this initial sample
that yield distances below t1. Starting from each one of those succeeding observations, sufficiently
many states of a Markov chain with stationary distribution πZ|Z∈Γt1

are generated to complete the
current elements of Γt1 up toN elements (cf. [8] for specific details on the MCMC sampling methods
with SuS). At each subsequent iteration ` = 2, ...,m, the sample {Z(`−1)

i }Ni=1 is used to calculate
{d(g2(Z

(`−1)
i), yobs)}Ni=1 and to set t` as the α-percentile of those distances. New observations in

Γt` are again sampled starting from the observations that yield distances below t`. This process stops
when ε is crossed (if the proposed t` ≤ ε then m is defined as ` and tm is set equal to ε) or when
a prescribed maximum number of iterations is reached. The final elements of Γε are used to form
candidate solutions in X via g1. pε can be estimated via p̂ε = αm−1Nm−1

N , with Nm−1 being the
number of succeeding particles at the penultimate iteration of SuS. This estimator sheds some light
on the diversity/uncertainty in the proposed solutions, from the GNN’s latent space perspective.

3 Results

We applied our methodology to cross-hole tomography inversion with linear, that is, straight ray
physics. Training and test sets of couples of subsurface domains and their solver outputs (i.e. (X,Y))
were simulated using a linear forward solver (cf. Figure 2). The training set was of size 9000
(sensitivity studies with a focus on smaller training set sizes ought to be performed in future work).
The domain (i.e. X) was discretized on a grid of size 50× 40 with a cell size of 0.1 m. The boreholes
were located 4 m apart and placed at the left and the right hand side of the domain (cf. Figure
2(a)). Nine sources and nine receivers were located between 0.5 and 4.5 m depth with 0.5 m spacing
leading to a total size of the measurement vector of 81 travel times. A Gaussian prior was used
on the slowness field with a mean of 14 ns/m and an isotropic exponential kernel with a length
scale of 2.5 m and a variance at the origin of 0.16 (ns/m)2. We chose a latent space dimension of
30, with a standard Gaussian prior. The data used to train the GNN were not noise-contaminated.
However, the measurement vector, yobs was obtained by sampling a solver output from the test set
and contaminating it with a noise vector. In our experiments, two noise vectors were sampled; one
from independent centred Gaussian-distributed random variables with 0.5 ns standard deviation, and
one from independent Gumbel-distributed random variables with 0.5 ns location and 1 ns scale. In
both cases, we refer to the rescaled l2 norm of the noise vector by the noise level.

3

Figure 2: (a): Cross-hole tomography setup, S1-9 GPR sources and R1-9 GPR receivers; (b): slowness
field in ns/m (high value corresponds to slow medium); (c): blue full line, travel times without noise,
in ns given by the forward solver corresponding to the field on the left; green crosses, travel times
contaminated by a standard Gaussian noise realization with a level of 0.52 ns; orange dotted line,
travel times contaminated by a Gumbel noise realization with a level of 1.41 ns.

When the noise is Gaussian, given the Gaussian prior on the field and the linear solver, we can
compare the proposed candidates obtained by our methodology with samples from the analytical
posterior on X by implementing the analytical solutions available in [13]. Figure 3(b,c) represent a
visual comparison of the pixels’ means and standard deviations of the proposed solutions against the
true Gaussian posterior sample statistics in Figure 3(a). With noise level at 0.52 ns, at tolerance 0.66
ns the proposed solutions approximate the posterior mean model and the true model relatively well
with an average RMSE of 0.294 ns/m ([0.145, 0.444]) and 0.336 ns/m ([0.213, 0.460]), respectively.
As a reference, the RMSE between samples from the analytical posterior and the true solution have
an average RMSE of 0.298 ns/m ([0.220, 0.375]) indicating that our method was able to propose
plausible solutions for this test case. Increasing the tolerance to 1.76 ns, more variability exists in the
sampled solutions with corresponding average RMSE at 0.454 ns/m ([0.280, 0.629]) with respect
to the analytical posterior mean and 0.488 ns/m ([0.323, 0.653]) with respect to the true solution.
The pixels’ standard deviations in Figures 3(b,c) also show this increase in variability, suggesting
more diverse solutions with increasing tolerance that become less informative about the true solution.
Under the assumption of an unknown noise distribution, we did not add a noise realization to the
GNN output during the inversion phase. With this choice, at the lowest tolerance level reached by

Figure 3: Mean (1st row) and standard deviation (2nd row) pixel wise summary statistics of the
proposed solutions against: the reference Gaussian posterior (a) at different tolerance levels (b,c) for
a Gaussian noise realization with a level of 0.52 ns; at different tolerance levels (d,e) with a Gumbel
noise realization with a level of 1.41 ns.

4

SuS, the proposed solutions underestimate the uncertainty of the true posterior. Choosing a value for
the tolerance higher than this minimum generates solutions with an uncertainty closer to the one in
the true posterior, with a tendency to overestimate it (cf. Figures 3(b,c)).

When the noise is Gumbel-distributed with a level of 1.41 ns, an analytical posterior cannot be
computed and we can only compare the proposed samples to the true solution from the test set shown
in Figure 2(b). At tolerance 1.02 ns, the proposed solutions have an average RMSE of 0.381 ns/m
([0.275, 0.487]) with respect to the true solution. At tolerance 1.76 ns, the average RMSE between
the proposed solutions and the true solution increases to 0.464 ([0.295, 0.633]). Reference values for
this case are not available, nevertheless, Figure 3(d) visually illustrates that, on average, the proposed
solutions are still able to provide information on the true solution at tolerance 1.02 ns with this level
of noise.

To further illustrate the impact of tuning the tolerance level ε on the variability of the proposed
solutions, we ran the algorithm multiple times with different ε values and estimated the probability
that a randomly sampled Z from the prior belongs to the solution set Γε. From Figure 4, we see how
the size of the solution set increases with increasing ε for the two noise cases presented earlier. We
also see that the minimum value of ε that is effectively reached by SuS is comparable to the noise
level in the Gaussian noise case, or below it for the Gumbel noise case.

Figure 4: Probability for a randomly sampled la-
tent Z from the prior to belong to the solution set
Γε vs tolerance level ε with 95% confidence in-
tervals. The blue curve illustrates the case with
Gaussian noise at level 0.52 ns. The red curve il-
lustrates the case with Gumbel noise at level 1.41
ns. The horizontal scale is logarithmic.

In terms of computational time, the training of
the GNN is generally expensive. However, it
only needs to be done once, before the actual
inversion starts, and is largely accelerated with
parallel processing on graphical units. Our inver-
sion procedure is based on the SuS implementa-
tion by Willer & Uribe [16]. It requires approxi-
mately 4 minutes to propose 1000 new solutions
and happens completely offline without calling
the forward solver. To establish a reference, we
ran direct SuS on the domain space X, sampling
directly from the prior on X and passing those
samples through the forward solver for evalu-
ation against the observation yobs. This direct
approach required approximately 4 hours to gen-
erate 500 solutions on the same hardware. We
note here that the direct method was slower be-
cause of the need to transform realizations of
X from and to the standard space by the SuS
algorithm and not due to the linear solver (which
only requires 0.002 seconds on average per for-
ward evaluation).These transformations became
costly compared to transforming the latent space
realizations in our method due to the high dimen-

sion of X compared to Z. Furthermore, the cost of the direct method is expected to further increase
with the increasing evaluation time of the forward solver and the increase in the dimension of X
which reduces the acceptance rate of the SuS sampler.

4 Conclusion & Future work

Those initial results suggest that the proposed methodology could offer a fast and cheap way to
explore the solution space of an inverse problem. Furthermore, it allows to tune the exploration
strategy and the uncertainty of the solutions by tuning a tolerance parameter. Presently, we are testing
this methodology with non-linear physics and more complex noise distributions to demonstrate its
ability to generalize. Furthermore, we are investigating how some hyper-parameters influence the
inversion, namely the dimension of the latent space, the architecture choices in the GNN, the training
sample size and the addition of noise during training or inversion.

5

Acknowledgments

The authors wish to thank the reviewers for their remarks that helped to improve the paper. EM
wishes to thank Shiran Levy for sharing scripts concerning the forward solver and for insightful
discussions, and Athénaïs Gautier for proofreading this manuscript. DG’s contributions have taken
place within the Swiss National Science Foundation project number 178858.

Broader Impact

The presented methodology could play an important role in solving inference problems in geophysics
and other domains like cosmology and medical imaging. It provides a rapid exploration of regions
of credible solutions to an inverse problem. It also provides a tuning parameter to regulate the
uncertainty level that is tolerated in the solutions to be sampled and, hence, allow for a wider or
narrower exploration strategy of the space. Furthermore, it can be adapted to different, pre-trained,
joint and conditional generative models.

References
[1] Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset

simulation. Probabilistic engineering mechanics 16(4), 263–277 (2001)
[2] Chiachio, M., Beck, J.L., Chiachio, J., Rus, G.: Approximate bayesian computation by subset

simulation. SIAM Journal on Scientific Computing 36(3), A1339–A1358 (2014)
[3] Laloy, E., Hérault, R., Jacques, D., Linde, N.: Training-Image Based Geostatistical Inversion

Using a Spatial Generative Adversarial Neural Network. Water Resources Research 54, 381–406
(2018)

[4] Laloy, E., Linde, N., Jacques, D.: Approaching geoscientific inverse problems with adversarial
vector-to-image domain transfer networks. arXiv preprint arXiv:1912.09954 (2019)

[5] Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain monte carlo without likelihoods.
Proceedings of the National Academy of Sciences 100(26), 15324–15328 (2003)

[6] Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic seismic waveform inversion using generative
adversarial networks as a geological prior. Mathematical Geosciences 52(1), 53–79 (2020)

[7] Padmanabha, G.A., Zabaras, N.: Solving inverse problems using conditional invertible neural
networks. arXiv preprint arXiv:2007.15849 (2020)

[8] Papaioannou, I., Betz, W., Zwirglmaier, K., Straub, D.: Mcmc algorithms for subset simulation.
Probabilistic Engineering Mechanics 41, 89–103 (2015)

[9] Patrini, G., Carioni, M., Forré, P., Bhargav, S., Welling, M., van den Berg, R., Genewein, T.,
Nielsen, F.: Sinkhorn autoencoders. CoRR abs/1810.01118 (2018)

[10] Richardson, A.: Generative adversarial networks for model order reduction in seismic full-
waveform inversion. arXiv preprint arXiv:1806.00828 (2018)

[11] Robert, C.P., Beaumont, M.A., Marin, J.M., Cornuet, J.M.: Adaptivity for abc algorithms: the
abc-pmc scheme. ArXiv e-print 805 (2008)

[12] Robert, C.P., Casella, G.: Monte carlo statistical methods (2004)
[13] Tarantola, A.: Inverse problem theory and methods for model parameter estimation, vol. 89.

SIAM (2005)
[14] Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders. In: Interna-

tional Conference on Learning Representations (ICLR 2018) (2018)
[15] Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media

(2008)
[16] Willer, Mathias and Uribe, Felipe: Subset simulation (2020), https://www.bgu.tum.de/

era/software/software00/subset-simulation/, accessed November 29, 2020
[17] Zuev, K.M., Beck, J.L., Au, S.K., Katafygiotis, L.S.: Bayesian post-processor and other

enhancements of subset simulation for estimating failure probabilities in high dimensions.
Computers & structures 92, 283–296 (2012)

6

https://www.bgu.tum.de/era/software/software00/subset-simulation/
https://www.bgu.tum.de/era/software/software00/subset-simulation/

	Introduction
	Methodology
	Results
	Conclusion & Future work

