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METHODOLOGY

X and Y represent the subsurface domain and the response of interest re-
specitvely, and are defined on X and Y. We assume that Y = F(X)+ E with E
a noise with an unknown distribution, and F' expresses the physics of the prob-
lem encoded by the simulator. We also assume that X and Y can be expressed
as a function of a latent variable Z € Z of moderate dimension compared to X
and Y, such that (X,Y) = G°(Z) = (9(Z),95(Z)). When Z is sampled from a
prescribed prior distribution, G° is a generative function of couples (X, Y).

The inverse problem consists in retrieving a distribution of subsurface do-
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RESULTS & CONCLUSION

ABSTRACT

We present preliminary work on solving geophysical inverse problems by ex-
ploring the latent space of a joint Generative Neural Network (GNN) model by
Approximate Bayesian Computation (ABC) based on Subset Simulation (SuS).
Given pre-generated subsurface domains and their corresponding solver outputs,
the GNN surrogates the forward solver during inversion to quickly explore the
input space through SuS and locate regions of credible solutions. Akin to ABC
methods, our methodology allows to tune the similarity threshold between ob-
served and candidate outputs. We explore how tuning this threshold influences
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full line, TT without noise given by the linear forward solver; green crosses,
TT with noise from a multivariate standard Gaussian (std = 0.5 ns); orange
dotted line, TT with noise from a multivariate Gumbel (location = 0.5 ns, scale
= 1 ns). A Gaussian prior is set on the slowness field with mean 14 ns/m and
exponential isotropic kernel (lengthscale = 2.5 m, variance at the origin = 0.16

(ns/m)?).

te determining a sequence of nested subsets of Z, I'y, = {z € Z : d(92(2), Yobs) <
te}(0 =0,...,m), with ¢,, set to e. t; is set such that the probability of {Z € I'y, }
is equal to a prescribed value a. p. = P(Z € T'.) = P(Z e I'y,) [, P(Z ¢
I'v,|Z € Ty, ) with P(Z € I'y;) = 1 since {Z € I'y,} is certain. This gives

De = ' % with N the sample size, and V,,_1 the number of observations
that y1€1d d(g2 (z)ayobs) < tm—1.
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Figure 4: Probability content in Z vs tolerance e
with Gaussian noise (blue) and Gumbel noise (red)
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tential to generalize.
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