
Differentiable Physics for Improving the Accuracy of Iterative 
PDE-Solvers with Neural Networks

Differentiable Physics with ΦFlow (phiflow)
Differentiable physics are required whenever an optimizer like a neural 
network interacts with a simulation. A differentiable simulation can compute 
the temporal gradient with respect to any parameter it is affected by.

ΦFlow is a framework for using and implementing differentiable simulations. 
Any simulation written in ΦFlow can automatically leverage the automatic 
differentiation utilities from PyTorch and TensorFlow.

Our experiments show that learned correction functions can achieve 
substantial gains in accuracy over a regular simulation. When training the 
correction functions with differentiable physics, this additionally yields further 
improvements of more than 70% over supervised and pre-computed 
approaches from previous work. Our examples include the different types of 
PDE interactions: Unsteady Wake Flow, Buoyancy-driven Flow, Forced 
Advection-Diffusion, Conjugate Gradient Solver, and Three-dimensional 
Fluid Flow.

• phiflow: Research-oriented differentiable simulation framework 
https://github.com/tum-pbs/PhiFlow

• Solver-in-the-Loop: Learning from Differentiable Physics to Interact with 
Iterative PDE-Solvers, NeurIPS’20. https://ge.in.tum.de/publications/

• Learning to Control PDEs with Differentiable Physics, ICLR’20. 
https://ge.in.tum.de/publications/2020-iclr-holl/

Experiments
Comparing three methodologies for DNN-PDE interactions:

Applications of Differentiable Physics Solvers
Learning to Reduce Numerical Errors:
● Consider two different discrete versions of the same PDE P: 
● P_R denoting a more accurate discretization with solutions r ∈ R from 

the reference manifold, and an approximate version P_S with solutions 
s ∈ S from the source manifold. ￼

● r and s represent phase space points and evolutions over time given by 
a trajectory in each solution manifold.

● A mapping operator T that transforms from one to the other manifold 
● E.g., for the initial conditions of the sequences above, we typically 

choose s = T r. Due to the inherently different numerical approximations, 
P_S (T r_t) = T r_t+1 for the vast majority of states.

● We use an L2-norm to quantify the deviations: L(s_t, T r_t) = |s_t − T 
r_t|_2. 

Central learning objective: learn a correction operator C(s) such that a 
solution to which the correction is applied has a lower error than an 
unmodified solution: L(P_s(C(T r_t0)), T r_t1) < L(P_s(T r_t0), T r_t1). The 
correction function C(s|θ) is represented as a deep neural network.

Further information

Numerical approximation error with respect to reference solution for unaltered simulations (SRC) and with learned corrections. 

Transformed solutions of the reference sequence computed on R (blue) differ from solutions computed on the source 
manifold S (orange). A correction function C (green) updates the state after each iteration to more closely match the 
projected reference trajectory on S.

Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, Nils Thuerey

• Non-interacting (NON): Purely uses the unaltered PDE trajectories.
• Pre-computed interaction (PRE): Can make use of phase space states 

that are altered by the pre-computed or analytic correction.
• Solver-in-the-loop (SOL): By integrating the model into training with 

differentiable physics solver, the corrections can interact with the physical 
system, alter the states, and receive gradients about the future 
performance.

Highlight: Our SOL model for a 3D Fluid Problem

Shown in terms of vorticity

Our PDE scenarios cover a wide range of behavior including (a) vortex shedding, (b) complex buoyancy effects, and (c) 
advection-diffusion systems. Shown are different time steps (l.t.r.) in terms of vorticity for (a), transported density for (b), 
and angle of velocity direction for (c).

Results

Analysis
The models trained with differentiable physics and look-ahead achieve 
significant gains over the other models.

For systems with deterministic behavior, long rollouts via differentiable 
physics at training time yield significant improvements. Our tests consistently 
show that, without changing the number of weights or the architecture of a 
network, the gradients provided by the longer rollout times allow the network 
to anticipate the behavior of the physical system better and react to it.

Correction code

Table: A summary of the quantitative evaluation for the five PDE scenarios. SOL_s denotes a variant with shorter look-ahead 
compared to SOL. (∗For the CG solver scenario, iterations to reach an accuracy of 0.001 are given. Here, SOL_s denotes the 
physics-based loss version.)

Phiflow solver
ML4PS Workshop

It comes with a number of built-in 
simulations like fluids. A basic 
simulation can be set up in few lines 
of code, and the provided demos 
showcase what can be done out of 
the box. The right image shows an 
example of a rotating obstacle in a 
fluid flow.

https://github.com/tum-pbs/PhiFlow
https://ge.in.tum.de/publications/
https://ge.in.tum.de/publications/2020-iclr-holl/

