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Turbulence modeling has been a major challenge for decades
Turbulent flows are omnipresent in nature and engineering applications. Turbulence
modeling and simulation has been a major challenge for decades due to the nonlinear
behavior and complex spatio-temporal dynamics.

Reynolds Averaged Navier Stokes equations need closure
In practical applications, the Reynolds averaged Navier Stokes (RANS) equations are
widely used. RANS equations are transport equations for ensemble-averaged flow
quantities, i.e. the averaged velocity and pressure field. The instantaneous velocity 𝑢! can
be decomposed into averaged part and fluctuating part as 𝑢! =< 𝑢! > + 𝑢!" . RANS
equations contain the unclosed Reynolds stresses R#$ =< 𝑢!"𝑢%" > . The fluctuating
velocities cannot be recovered from averaged quantities, 𝑅!% has to be modeled.
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The closure problem can be deferred to a deeper level. In Reynolds stress turbulence
closure, exact transport equations for the Reynolds stresses can be derived. However, the
Reynolds stress transport equations (RSTE) themselves contain unclosed terms which

need modelling, i.e. the pressure-strain correlation Π#$ =< p" &(!
$
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= 𝑃!% + Π!% − 𝜖!%

The fluctuating component of a turbulent quantity is a random variable.
The fluctuating component of a physical quantity in turbulent flows can be interpreted as a
stochastic variable with a distinct underlying probability distribution [1]. In fact, PDF
turbulence models solve an approximate Fokker-Planck for the PDF of the turbulent
quantity.

The key idea of our NF-PDF ansatz is to learn the underlying probability density functions
of the turbulent quantities from data. Once the PDFs are learned, we can sample from
them, and subsequently calculate ensemble-averaged quantities explicitly. I.e., our
procedure consist of the following three steps:

1. Learn the PDF of the fluctuating quantity 𝑢"~𝑝.$(𝑢")

2. Draw 𝑁 samples from the learned PDF {𝑢/" , 𝑢0" , … , 𝑢1" }

3. Calculate averages over sampled set, e.g. < 𝑢"𝑢" >= 0
1
∑𝑢!"𝑢!"

Note, the training (step 1) has to be done only once before applying the NF-PDF model in
a downstream task, i.e. RANS simulations.

Normalizing Flows (NF)
Normalizing flows are able to learn almost any PDF 𝑝2 𝑥 by applying a series of bijective
transformations g3 = 𝑓340 to a simple prior probability distribution 𝑝5(𝑧), for example a
Gaussian. Given the change of variable formula, the trainable parameters 𝜃 of the
normalizing flow, often weights of a neural network, can be optimized by minimizing the
negative log-likelihood

log 𝑝2 𝑥 𝑐, 𝜃 = log(𝑝5 𝑓 𝑥 𝑐, 𝜃 + log |det(&6 𝑥 𝑐, 𝜃
&+

)|

The PDF can have additional physical conditioning arguments 𝑐, e.g. mean flow conditions
or time. 𝜕𝑓 𝑥 /𝜕𝑥 denotes the Jacobian of the transformation. In this work, we use real-
valued non-volume preserving (RNVP) transformations [2]. The prior variable 𝑧 ∈ ℝ7 is
split into two disjoint parts 𝑧8, 𝑧9 ∈ ℝ74: ×ℝ:. Then the transformation is applied as

𝑥8 = 𝑧8, 𝑥9 = 𝑧9 ⨀exp(𝑠 𝑧8 ) + 𝑡 𝑧8 ,

where 𝑠 and 𝑡 are neural networks with trainable parameters 𝜃.

Results for Homogeneous Shear Turbulence
We present results of the NF-PDF model for Homogeneous Shear Turbulence (HST). HST 
is a canonical turbulent shear flow. High fidelity data is obtained from Direct Numerical 
Simulations with a parallelized pseudo-spectral code.

We train an 8 layers RNVP with neural networks with three hidden layers with 64 neurons
each to learn the PDF of the velocity fluctuations in a steady-state bounded HST. Figure 2
shows an instantaneous velocity field and the probability density function of the 𝑢;" -
component. The NF captures the PDF very accurately.

Before the HST reaches a steady-state, the Reynolds stresses are time-dependent in an
initial transient phase. We use a conditional NF to learn p(p"|𝑡) and 𝑝(𝜕𝑢!"/𝜕𝑥%|𝑡) from
which we can close the dissipation and pressure-strain correlation in the RSTE. Figure 3
shows that the NF-PDF model yields good predictive results, even when evaluated at time
instances in between training points from the DNS.

Conclusion
We have presented Normalizing Flow PDF turbulence models as a promising novel 
approach for successfully modelling the Reynolds stress tensor as well as the pressure-
strain correlation and the dissipation tensor. NF-PDF models have the potential to close 
the RANS equations without adhoc closures. Further research focuses on increasing the 
predictive capabilities and on an extension to more complex turbulent flows.
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Figure 2. Left: Snapshot of a turbulent velocity field from HST. Right: PDF of the 𝑢!" velocity showing non-Gaussian behavior. 
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Figure 2: Pressure-strain correlation ⇧ij (left) and dissipation ✏ij (right) over normalized time. The
initialized velocity field is incompressible and isotropic. The NF-PDF model is fitted once a natural
turbulent velocity field has developed (St = 2). S = 20

p
2, ⌫ = 0.01/

p
2, Re = SL2/⌫ = 157914.

tensor represents non-local interactions, its accurate prediction is particularly challenging. NF-PDF
models have the potential to solve this key challenge of turbulence. Further research focuses on
improving the prediction fidelity and on extending our method to more complex turbulent flows.

Broader Impact

Turbulent flows are omnipresent in nature and engineering applications. On the one hand, unde-
standing turbulent flows plays an important role in the design of efficient engineering devices. For
example, wind turbines rely heavily on the profound understanding of the incoming flow conditions,
while turbulent mixing reduces emissions of combustion engines. On the other hand, the accurate
simulation of turbulent atmospheric flows is crucial for weather forecasting. High-fidelity turbulence
models play a central role in the prediction of hazardous weather events, e.g. hurricanes, air pollution,
and wild fires. The authors recognize that their work contributes to both aforementioned aspects.
Although the current work is still very much fundamental turbulence research, the authors are aware
of its societal impact. At this point, the authors do not see any ethical concerns regarding the present
work.
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Figure 1. Change of variables. The bijective function 𝑓#$% transforms the prior distribution to the target distribution. 
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Figure 1: Left: Reynolds stress tensor over normalized time. Right: PDF of the u0
2-velocity component

with nsample = 107. The dotted line is a Gaussian distribution with same mean and variance as the
DNS data. Parameters of the HST flow are: S = 1, ⌫ = 0.0015, Re = SL2/⌫ = 2632.

Table 1: Components of the velocity anisotropy tensor bij .

Case b11 b22 b33 b12
DNS 0.245 �0.128 �0.118 �0.159

NF, nsample = 103 0.246 �0.126 �0.119 �0.166
NF, nsample = 105 0.245 �0.125 �0.120 �0.160

We train an unconditional normalizing flow to learn the probability density distribution of the
fluctuating velocities u0

i, i.e. x = u0 2 R3. The fluctuating velocities show non Gaussian behavior in
the x2 and x3 component, see for example Fig. 1 (right). Sampling from the NF model gives us u0

i,
so that Rij =< u0

iu
0
j > can be easily computed. A RNVP flow of 8 coupling blocks is used. The

neural networks in the affine coupling layers have three hidden layers with 64 neurons.

The NF accurately captures the PDF of the velocity components. By sampling from the NF and
successive ensemble-averaging the Reynolds stress components can be calculated. Table 1 shows
very accurate predictions for the Reynolds anisotropy tensor bij =< u0

iu
0
j > / < u0

ku
0
k > ��ij/3

when compared to the DNS results.

4.1.1 Closure of the Reynolds Stress Transport Equation

In the initial transient state of HST, the Reynolds stresses are time dependent. We use a conditional
NF to estimate the pressure-strain and dissipation tensor, which can then be used in the RSTE (2) to
compute the Reynolds stresses. We learn the PDF of the velocity derivatives p( @u

0
i

@xj
|t) and of the

fluctuating pressure p(p0|t) conditioned on time t, i.e. x =
⇣

@u0
i

@xj
, p0

⌘
2 R10. An 8 layers RNVP

flow is constructed with neural networks with three hidden layers each containing 128 hidden units.
The time t is concatenated to x and passed as an input to each RNVP layer.

The NF-PDF model accurately captures the dissipation term while the pressure-strain tensor prediction
is adequate, see Fig. 2. In addition, the NF-PDF model yields very good predictive results when
evaluated at time instances in between training points from the DNS. We observe a slight deviation
from the DNS results in the ⇧11 component at early times. This error decreases with time.

5 Conclusion

We have presented a novel turbulence closure model on the basis of normalizing flows. In this proof
of concept, we have shown that the NF-PDF closure model can successfully model the Reynolds
stress tensor as well as the pressure-strain correlation and the dissipation tensor. As the pressure-strain
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Figure 3. Pressure-strain correlation (left) and dissipation (right) over normalized time. 


