Chair of Aerodynamics and Fluid Mechanics
Department of Mechanical Engineering
Technical University of Munich

Normalizing Flows as a Novel PDF Turbulence Model (NF-PDF Model)
Deniz A. Bezgin™, Nikolaus A. Adams

Turbulence modeling has been a major challenge for decades

Turbulent flows are omnipresent in nature and engineering applications. Turbulence
modeling and simulation has been a major challenge for decades due to the nonlinear
behavior and complex spatio-temporal dynamics.

Reynolds Averaged Navier Stokes equations need closure

In practical applications, the Reynolds averaged Navier Stokes (RANS) equations are
widely used. RANS equations are transport equations for ensemble-averaged flow
quantities, i.e. the averaged velocity and pressure field. The instantaneous velocity u; can
be decomposed into averaged part and fluctuating part as u; =<u; > +u;. RANS
equations contain the unclosed Reynolds stresses Rij=<u{u]f>. The fluctuating
velocities cannot be recovered from averaged quantities, R;; has to be modeled.
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The closure problem can be deferred to a deeper level. In Reynolds stress turbulence
closure, exact transport equations for the Reynolds stresses can be derived. However, the
Reynolds stress transport equations (RSTE) themselves contain unclosed terms which
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The fluctuating component of a turbulent quantity is a random variable.

The fluctuating component of a physical quantity in turbulent flows can be interpreted as a
stochastic variable with a distinct underlying probability distribution [1]. In fact, PDF
turbulence models solve an approximate Fokker-Planck for the PDF of the turbulent
quantity.

The key idea of our NF-PDF ansatz is to learn the underlying probability density functions
of the turbulent quantities from data. Once the PDFs are learned, we can sample from
them, and subsequently calculate ensemble-averaged quantities explicitly. l.e., our
procedure consist of the following three steps:

1. Learn the PDF of the fluctuating quantity u'~pyr(u')

2. Draw N samples from the learned PDF {u,, uy, ..., uy}

1
3. Calculate averages over sampled set, e.g. < u'u’ > ==Yu;u;
N

Note, the training (step 1) has to be done only once before applying the NF-PDF model in
a downstream task, i.e. RANS simulations.
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Normalizing Flows (NF)

Normalizing flows are able to learn almost any PDF py(x) by applying a series of bijective
transformations gy = f; ' to a simple prior probability distribution p;(z), for example a
Gaussian. Given the change of variable formula, the trainable parameters 6 of the
normalizing flow, often weights of a neural network, can be optimized by minimizing the
negative log-likelihood

log(px (xlc, 6)) = log(pz(f (xlc, 8)) + log ldet LIS 2,

The PDF can have additional physical conditioning arguments c, e.g. mean flow conditions
or time. df (x)/dx denotes the Jacobian of the transformation. In this work, we use real-
valued non-volume preserving (RNVP) transformations [2]. The prior variable z € R? is
split into two disjoint parts (z4,z8) € RP~¢ xR%. Then the transformation is applied as
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x4 =z4, xB =28 @exp(s(z?)) + t(z4),

where s and t are neural networks with trainable parameters 6.
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Figure 1. Change of variables. The bijective function f;* transforms the prior distribution to the target distribution.
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Figure 2. Left: Snapshot of a turbulent velocity field from HST. Right: PDF of the u; velocity showing non-Gaussian behavior.

Results for Homogeneous Shear Turbulence

We present results of the NF-PDF model for Homogeneous Shear Turbulence (HST). HST
IS a canonical turbulent shear flow. High fidelity data is obtained from Direct Numerical
Simulations with a parallelized pseudo-spectral code.

We train an 8 layers RNVP with neural networks with three hidden layers with 64 neurons
each to learn the PDF of the velocity fluctuations in a steady-state bounded HST. Figure 2
shows an instantaneous velocity field and the probability density function of the u;-
component. The NF captures the PDF very accurately.

Before the HST reaches a steady-state, the Reynolds stresses are time-dependent in an
initial transient phase. We use a conditional NF to learn p(p’|t) and p(du;/0x;|t) from
which we can close the dissipation and pressure-strain correlation in the RSTE. Figure 3
shows that the NF-PDF model yields good predictive results, even when evaluated at time
instances in between training points from the DNS.
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Figure 3. Pressure-strain correlation (left) and dissipation (right) over normalized time.

Conclusion

We have presented Normalizing Flow PDF turbulence models as a promising novel
approach for successfully modelling the Reynolds stress tensor as well as the pressure-
strain correlation and the dissipation tensor. NF-PDF models have the potential to close
the RANS equations without adhoc closures. Further research focuses on increasing the
predictive capabilities and on an extension to more complex turbulent flows.
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