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Abstract

The mechanical property of soils is a vital part of seismic hazard analysis of a
site. Such properties are obtained by either in-situ (destructive) experiments such
as crosshole or downhole tests, or by non-destructive tests using surface wave
inversion methods. While the latter is more favorable due to the cost-efficiency,
there are challenges mostly due to computational need, non-uniqueness of inversion
results, and fine-tuning parameters. In this article, we use a deep learning frame-
work to circumvent the above-mentioned limitations to output soil mechanical
properties, requiring dispersion data as input. Our trained model performs with
high accuracy on the test dataset and shows satisfactory performance compared
to the ensemble Kalman inversion technique. We finally propose a framework to
extend the method to higher dimensions by numerically solving the wave equation
in a two-dimensional medium.

1 Introduction

One-dimensional (1D) site response is the most prevalent method to assess the seismic hazard. In
this approach, the 1D wave equation is solved in a layered soil medium under certain initial and
boundary conditions. Numerical methods such as Finite Difference (FD) and Finite Element (FE)
are among the commonly used methods to simulate the medium subjected to a time-series at the
bottom of a discretized domain to represent earthquake loading. Given the dynamic nature of the

∗Use footnote for providing further information about author (webpage, alternative address)—not for
acknowledging funding agencies.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



Figure 1: An example of dispersion curve (phase velocity versus frequency) with corresponding soil
shear wave velocity profile (variation of velocity with depth). The trained model gets the data on the
left and returns the data on the right.

problem, for each soil layer, three separate parameters are needed (3n parameters for an n-layered
soil). However, these parameters are not easily available, and obtaining them requires huge machinery
for in-place testing. Therefore, researchers and engineers resort to inversion techniques, such as
ensemble Kalman inversion [1], stochastic direct search algorithm [2], uniform Monte Carlo method
[3], and fully Bayesian Markov chain Monte Carlo method [4] to name but a few, to reconcile the
issues. Such techniques mostly rely on ground surface acceleration time-series and dispersion data to
infer the mechanical properties of soil layers. A comprehensive review of inversion techniques for
this application can be found in [1].

In general, dispersion data (which is the velocity versus frequency curve shown in Figure 1) is more
accessible than time-series, the reason that the majority of studies rely on them for inversion purposes
[5, 1]. However, due to the non-uniqueness of solutions, researchers have tried to better constrain the
uncertain parameters by including time-series data in the inversion process [1]. In this article, we use
only dispersion data to invert for the mechanical properties of a soil medium using a Deep Neural
Network (DNN) model. The data set includes a large number of soil profiles and their corresponding
dispersion curves. Our approach uses these theoretical dispersion curves of various soil columns to
train a model that is able to return the soil shear wave velocity profile with high accuracy. In the next
section, we detail the methodology. This includes the problem statement, the generation of training
data, the architecture of the network, and hyperparameter tuning. Next, we assess the capability of the
network on a test dataset. Finally, we compare the network’s performance versus the state-of-the-art
ensemble Kalman inversion technique [6].

2 Methodology

2.1 Problem Statement

The problem includes finding u given yi as input. Eq 1 frames this as an inversion problem.

yi = G(ui) + ηi (1)

where u ∈ Rk shows k unknown parameters in the inversion process, yi ∈ Rm shows m observation
points, ηi ∈ Rm is zero-mean Gaussian noise added to the observation data for training process,
and G is a forward nonlinear function. The Deep Neural Network tries to learn the inverse of G
function (H : ui = H(yi − ηi)). In the above equation, yi is the dispersion data which shows the
phase velocity values of the surface wave as a function of frequency, and u demonstrates the shear
wave velocity value of soil profile. Figure 1 shows an example of a dispersion curve and soil shear
wave velocity profile.

2.2 Dataset

For training data, we inquire shear wave velocity profiles of California from the PySeismosoil package
[7]. PySeismosoil package returns an average shear wave velocity profile given V s30 (shear wave
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Table 1: Range of parameters for training set generation.

Network
Layer Description

V s30 (Shear wave velocity of top 30m) 200− 800 (m/s)
Z1 (Depth at which shear wave velocity becomes 1000m/s) 1000− 4000 (m)

Figure 2: Variation of training and validation
losses as a function of epochs.

Table 2: Architecture of network.

Network

Layer Description Size

Input Regular R299

HL 1 Regular R299

HL 2 Resnet R299

HL 3 Resnet R299

HL 4 Resnet R299

HL 5 Regular R299

Output Regular R250

velocity of the top 30m of soil) and Z1 (depth of rock) values. Table 1 shows the ranges of values
that are used to generate the profiles from PySeismosoil. The generated profiles are later randomized
(this feature is available in PySeismosoil) to expand the dataset with new examples.

The theoretical dispersion curves are calculated using GEOPSY [8] which includes the fundamental
mode of Rayleigh wave. The data set consists of yi ∈ R299 (dispersion data), which covers
frequencies in the range of f ∈ [0.1, 30]Hz. Besides, u ∈ R250 which is a vector with soil shear
wave velocity at every 2m in depth (total soil column thickness of 500m). The data set is finally
divided into 80/10/10 partitions for training, validation, and testing.

2.3 Deep Neural Network

We use a deep neural network in this study with 5 hidden layers to perform regression analysis
and each hidden layer consists of ResNet units [9]. A ReLU activation function is added to hidden
layers. Adam optimizer [10], L2 norm cost function, and learning rate of lr = 10−4 are used for
the learning purpose. It should be noted that learning rate was chosen based on a grid search on a
limited number of potential values, i.e. lr = 10−5, 0−4, 10−3, 10−2. Moreover, Sgd was also used in
addition to Adam optimizer but in this case, Adam turned to a favorable choice. Early termination is
also performed to prevent overfitting. Table 2 shows the architecture of the deep neural network.

Moreover, Figure 2 shows the loss variation for training and validation set as a function of epochs.
We started with 200 epochs but terminated the learning after 100 iterations for the results that will be
shown in this article. The reader is referred to Section 4 for more detail about the model and data set.

3 Results

3.1 Test dataset

As was previously mentioned, 10% of data was reserved for testing purposes. Figure 3 shows the
performance of the trained model on the test data set. Each point on this figure illustrates one
component of the output vector (remember that u ∈ R250) versus the corresponding true value. In
a perfect model, all the points should lie on the y = x line (shown by a dashed line in the figure).
While the model is not perfect as expected, the performance is satisfactory in terms of accuracy as
shown by the r2 value between predicted and target values.
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Figure 4: Three randomly chosen examples from test dataset. Each figure shows the true output
"Target" and the prediction of DNN.

Figure 3: Comparison of predicted versus true values for test dataset. Each point on the figure shows
one component of output array.

Furthermore, Figure 4 shows three randomly chosen data points from the test data set. For each
example, the dispersion data (input of NN) and corresponding shear wave velocity profile (Target)
are obtained. The input is fed into the model and the prediction of the model versus true values is
depicted in this figure. As can be seen, the model can predict the Target values with high accuracy.
Note the sudden jumps in the "target" that are not fully captured by the model. This can be partially
attributed to the model trying to avoid overfitting. We also tested Stochastic Gradient Descent (SGD)
for training which seemed to be able to better capture the sudden jumps. However, it would take
significantly longer iterations to reach a satisfactory loss level.

3.2 Comparison with ensemble Kalman inversion method

Seylabi et al. (2020) showed an application of ensemble Kalman inversion (EKI) to invert for soil
shear wave velocity profile given dispersion data as input [1]. Figure ?? shows a comparison of
predictions using the model trained in this study versus the results of EKI reported by [1]. As can
be seen, the network is able to predict target values with satisfactory precision and performs well in
comparison to the EKI method. The main advantage of the DNN model used here over the EKI is its
ability to predict accurate results needless of any sort of initialization and parameter tuning. This is
important from a practical standpoint. A user can easily perform the inversion without an in-depth
knowledge of the network’s architecture of the training process.

4 Conclusion

In this study, we train a DNN model that takes dispersion data as input and returns the shear wave
velocity profile of a soil medium as output. The training dataset is generated using 1D shear wave
velocity profiles of California [7] and dispersion data is calculated using GEOPSY [8]. The model
was evaluated on a test dataset in addition to the recently published work of Seylabi et al. (2020) [1]
where they used the ensemble Kalman inversion method. In both cases, the performance was shown
to be satisfactory, while the model doesn’t need any further fine-tuning or initialization as required by
EKI. For a future part of this study, we intend to extend the current approach to 2D problems where
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Figure 5: Comparison of current model versus the published results of Seylabi et al (2020) [1]

training data will be generated by solving the wave equation using the Finite Element method. This
problem is known to be difficult to tackle even with modern statistical techniques, and few studies
approached it such as [11].
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Broader Impact

Assessing earthquake hazard in a region while building a new structure is one of the tasks that is
performed in early stages of a construction project. Given the fact that there are numerous earthquake-
prone locations in the US and around the world, this task has been accommodated in design codes.
However, when engineers try to perform this assessment, they often find themselves wondering about
the mechanical properties of a soil medium in which earthquake wave propagates through before
arriving to the surface of the Earth. Obtaining these properties are not an easy task, even using
advanced statistical techniques, where problems such as nonuniqueness of solutions and uncertain
parameter initialization often occur during the inversion process. Neural networks are able rectify
these issues in an efficient way. In our work, we trained a model that will significantly facilitate the
inversion process. Therefore, an engineer can obtain mechanical properties by only using readily
available dispersion data. In addition, the general framework we used here can be extended to higher
dimensions.

Data and resources

The data set, notebook used for training, and the trained model are available at https://github.
com/payoubi/Neurips_2020_1D_soil_inversion_NN.
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