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Abstract

Models of quantum mechanical systems capture their interactions, but they are
often difficult to retrieve. We describe and implement a Quantum Model Learning
Agent (QMLA) to reverse engineer Hamiltonian descriptions from simulated ex-
perimental observations and we test its performance. We demonstrate the protocol
operating in large model spaces by incorporating a genetic algorithm, devising an
objective function inspired by the Elo ratings scheme, which is typically used to
rate competitors in games such as chess and football. In a space of over 250, 000
candidate models, the genetic algorithm identifies, in 90% of cases, models with
F1-score > 0.8, when compared with the known target model. By determining
the operations which actually occur with respect to those desired, QMLA can be
used for the characterisation and calibration of new quantum devices

1 Quantum model learning agent

Recent interest in distilling insight about real quantum systems has resulted in machine learning
methodologies such as Quantum Hamiltonian Learning (QHL), for the retrieval of the parameters
built into the models assumed to describe the target systems [1, 2, 3, 4, 5, 6]. Meanwhile, model
recovery algorithms are gaining traction in the study of solid state systems [7, 8, 9]. QMLA is a
framework to reverse engineer models of quantum systems, combining the concepts of individual
model training with model search mechanisms.

QMLA was recently introduced and applied in an experimental context [10]; here we extend the
protocol to target larger model spaces using simulated target systems, employing a genetic algorithm to
search among 250, 000 candidate Hamiltonian models. These represent the generators of the observed
dynamics if targeting closed quantum systems, so that the output of QMLA is an approximate but
complete model for the system

1.1 Algorithm

For a target quantum system,Q, whose Hamiltonian is given by Ĥ0, QMLA distills a model Ĥ ′ ≈ Ĥ0.
Models are characterised by their parameterisation, i.e. their constituent operators, or terms, along
with corresponding scalar factors. For example, a model consisting of the sum of one-qubit Pauli
terms, Eqn. 1,
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Figure 1: Schematic of QMLA. (a-d), model search phase for an Exploration Strategy. (a), Models
are placed as (empty, purple) nodes on a branch, µ, where each model is the dot product of parameters
~αi with terms ~T . (b), Each model in the branch is trained according to a subroutine, such as quantum
Hamiltonian learning, to optimise ~αi, resulting in the trained Ĥ(~α′

i) (filled purple node). (c), µ is
consolidated, i.e. models are evaluated relative to other models on µ, according to the consolidation
mechanism specified by the ES. In this example, pairwise Bayes factors Bij between candidate
models Ĥi, Ĥj are computed, resulting in the election of a single branch champion Ĥµ

C (bronze). (d),
A new set of models are spawned according to the result of the consolidation stage. These become
the nodes of the next branch, iterating back to a. (e-f), Overview of entire QMLA procedure. (e),
The model search phase is captured by an exploration tree (ET); Multiple ESs can operate in parallel,
e.g. assuming different underlying physics, so there are several ETs. Each ES nominates a champion,
Ĥ ′
S (silver). (f), ES champions are consolidated to give the final champion model, Ĥ ′ (gold), i.e. the

model QMLA’s finds as the strongest approximation for the system under study.

Ĥ = αxσ̂
x + αyσ̂

y + αzσ̂
z = (αx αy αz) ·

(
σ̂x

σ̂y

σ̂z

)
= ~α · ~T (1)

is characterised by its parameters ~α and terms ~T . QMLA aims primarily to find ~T ′, secondarily to
find ~α′, such that Ĥ ′ = ~α′ · ~T ′ ≈ Ĥ0. In doing so, Q can be completely characterised.

Candidate models Ĥi are trained independently: Ĥi undergoes a parameter learning subroutine to
optimise ~αi. In this work we use QHL as the parameter learning subroutine [1], although alternative
methods can be adopted [11, 5]. The training of individual candidate models involves querying the
target system by running customised experiments, and measuring the system in one of its eigenstates,
collecting binary projected data processed via interactive quantum likelihood estimation [3]1. The
choice of experimental times for which to evolve the target system is an active area of research, with
several heuristic attempts to design informative experiments from which to learn [2, 12]; we use a
heuristic algorithm which exploits the most up-to-date knowledge of the candidate’s parametrisation
[4].

QMLA considers several branches µ of candidate models: we can envision individual models as
nodes on a branch. Then, at each new branch, models are constructed accounting for the strengths
and weaknesses detected on prior branches, so the average approximation of Ĥ0 should iteratively
improve with each branch.

1Note: within QHL, we use 500 experiments and 2000 particles during the training of each model, see [1].
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Branches are consolidated, meaning that models are evaluated relative to each other, and ordered
according to their strength. Models favoured by the consolidation are then used to spawn a new
set of models, which are placed on the next branch. Bayes factors (BFs) are a useful quantity for
distinguishing between models on a pairwise basis: they quantify the relative performance of a given
model with respect to a competitor, when both were trained on the same data [13]. Moreover, BFs
implicitly favour models of lower paramterisation, i.e. they require strong evidence to favour the
model of higher cardinality, automatically granting protection against over-fitting.

The QMLA procedure is depicted in Fig. 1, centred on an iterative "model search" phase, which
is directed by an Exploration Strategy (ES). The core task of an ES is to specify the spawning
mechanism, i.e. how to generate new candidate models based on the information available. In
addition, the ES directs the QMLA algorithm at several junctions, such as the resources allocated to
learning each model. ESs are bespoke to a given situation; usually the next branch of models is built
by exploiting the knowledge gained during the previous branch. For example, the single strongest
model found in µ can be retained and spawn new models which merely add one further term, i.e.
greedy spawning. The ES further specifies how QMLA should consolidate each branch, i.e. how to
evaluate the relative strength of each model in µ. The structure of the ES is left entirely to the user; in
the next section we outline the logic of the ES used in this work.

The model search phase is subject to termination criteria set by the ES, e.g. when a set number
of branches, or some convergence threshold, is reached. QMLA then declares the strongest model
considered as the champion with respect to the ES, Ĥ ′

S . Finally, QMLA can concurrently run multiple
ESs, so the final step of QMLA is to consolidate the set {Ĥ ′

S}, in order to declare a final champion
model, Ĥ ′.

We emphasise that QMLA is a generic framework with numerous modular aspects, such as the model
training subroutine, model consolidation strategy, and model spawning mechanism, all of which are
specified by the user-designed ES. In this work we focus on an ES embedding a genetic algorithm,
but note that alternative ESs can be used for other use cases, for example the greedy model spawning
mechanism in [10].

2 Genetic algorithm

We devise a Genetic Algorithm (GA) to implement an adaptive ES search capable of global optimisa-
tion across large model spaces. Nm models are proposed in a single generation of the GA, which
runs for Ng generations, in clear analogy with the branches of QMLA. We outline the usual process
of GAs, along with our choice of selection, cross-over and mutation mechanisms, in Appendix A.

First we define the set of terms, T = {t̂i}, which may occur in Ĥ0, e.g. by listing the available
couplings in our target system. t̂i are mapped to binary genes such that chromosomes can be written
as binary strings and immediately interpreted as models, e.g. in Table Apdx 1. We study a 4-site
lattice with arbitrary connectivity under a Heisenberg–XYZ model, omitting the transverse field for
simplicity, i.e. any two sites i, j can be coupled by any of {σ̂xi σ̂xj , σ̂zi σ̂zj , σ̂zi σ̂zj }. There are therefore
|T | = 3×

(
4
2

)
= 18 binary genes, resulting in a model space of 218 ≈ 250, 000 candidates.

We can gauge the performance of QMLA’s model search by the quality of candidate models produced
at each generation: our primary figure of merit is F1-score, f ∈ (0, 1), which we use as a proxy for
the quality of each candidate model Ĥi. f indicates the degree to which Ĥi captures the physics of
the target system: f = 0 indicates that Ĥi shares no terms with Ĥ0, while f = 1 is found uniquely
for Ĥi = Ĥ0. Note that here we are able to compute f for candidate models because the target Ĥ0 is
simulated, i.e. we know the true terms T0; this would not be available for a real system with unknown
Ĥ0, but is useful for the analysis of the algorithm itself.

In the absence of a natural objective function, we design a rating system for models, based on the Elo
ratings scheme used in chess and sports rankings [14]. Each candidate, Ĥi, is assigned a number of
Elo points Ri; during the consolidation stage of QMLA, direct model comparisons facilitate transfer
of Elo points from the inferior to the stronger model, weighted by the evidence of the comparison.
This ratings scheme is detailed in Appendix A.1.
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Figure 2: A single instance of QMLA using the genetic exploration strategy, with Nm = 28. In
all subplots we are showing sets of candidate models, coloured by their F1-score, to indicate their
overlap with the target model. (a-b), The first generation of the genetic algorithm. (a), The rating,
Ri of each candidate model, Ĥi, is updated according to its direct comparison with alternatives Ĥj .
Comparisons occur through pairwise Bayes factors, where the inferior model transfers some of its Elo
points to the favoured model. Note the Bayes factor is not computed between every pair of models,
but instead every model is compared against a random subset (∼ 50%) of contemporaries within
the generation. The series of Bayes factor calculations allow us to distinguish statistically strong
from weak models: the highest-rated 14 models are considered for parental selection. (b), Models’
selection probabilities, where parents for the next generation are chosen via a roulette scheme. Each
model’s probability of being chosen as a parent, during the generation of new models, is based on
their final rating from a. The models shown in the pie chart are the strongest 14 candidates from the
first generation, depicted in c. (c), Progression of the gene pool across Ng = 10 generations. Each
tile represent a model; models at generation g are spawned from parents which performed relatively
well during generation g − 1. Models are sorted by their F1-score, not the ratings shown in a.

In Fig. 2 we first show the inner-proceedings of an individual generation, as well as the results of a
single QMLA instance using this genetic algorithm approach as the ES. We then show the combined
results of 50 independent instances, in Fig. 3, showing the frequency with which models of different
quality (F1-score) are nominated as Ĥ ′, as well as the rates with which each individual t̂i ∈ T
is detected. QMLA correctly identifies Ĥ0 precisely in 32% of instances, with 90% of instances
resulting in Ĥ ′ with f ≥ 0.8, while the identification rate of all t̂i ∈ ~T0 are significantly higher than
t̂i /∈ ~T0.

This adaptive ES may prove a useful application of QMLA in the domain of device calibration,
in particular to characterise some untrusted quantum simulator. That is, by using the simulator to
implement some target Ĥ0, QMLA can identify which operator is actually implemented. For instance,
implementation of a four–qubit model relies on high-fidelity two-qubit gates between arbitrary qubit
pairs, and QMLA can effectively reconstruct which operations were and were not faithfully computed.

3 Conclusion

We have shown that our proposed protocol, QMLA, can be used to find an approximate model
to characterise quantum systems. By facilitating the construction of models according to users’

4



0% 10%

Model space

0.0

0.5

1.0

F1

(a)

0% 10% 20%
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Figure 3: 50 instances of QMLA genetic algorithm. (a), The model space contains 218 ≈
250, 000 candidate models; normally distributed around f = 0.5± 0.14. (b), The models explored
during the model search of all instances combined, {Ĥi}, show that QMLA tends towards stronger
models overall. (c), Champion models from each instance, showing QMLA finds strong models
in general, and in particular finds the true model Ĥ0 (with f = 1) in 32% of cases. (d), Hinton
diagram where the size of the blocks show the frequency with which terms are found, while the
colour indicates whether that term was in the true model (∈ T0, blue) or not (/∈ T0, red).

specific needs, as well as modular subroutines for training and comparing models, QMLA provides a
framework for the characterisation of grey-box quantum systems, where users have some knowledge
of the range of possible interactions. Essentially, the user may specify the system Q to target, then
QMLA – using a trusted (classical or quantum) simulator – determines a model consistent with data
measured from Q.

The demonstrated application of this protocol concerns Q as a new, untrusted quantum simulator,
whose operation the user wishes to calibrate. QMLA can assess whether the device faithfully imple-
ments an encoded Ĥ0, deducing the operations performed otherwise. This allows for the calibration
of devices composed of superconducting qubits, for example, by characterising whether two distant
qubits are coupled as intended. Future applications of the framework envision distinguishing between
physical regimes, such as whether a target system is best described by Ising, Heisenberg or Hubbard
models.

Broader Impact

Near term quantum devices are likely to suffer from fabrication and design imperfections, requiring extensive
validation before they can offer computational and metrological advantage. QMLA will benefit the wider
development of quantum technologies, by aiding in the calibration, verification and characterisation of these
noisy intermediate scale quantum processors and sensors. We intend to provide an open source tool box which
can interface with any quantum hardware to retrieve the operators actually implemented, with respect to those
desired, allowing for straightforward, automatic calibration of new devices.
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Model Chromosome

~T σ̂x(1,2) σ̂z(1,2) σ̂y(2,3) σ̂x(2,3) σ̂y(2,3) σ̂x(2,3)

pA (σ̂x(1,2) σ̂z(1,2) σ̂y(2,3))
1 0 1 0 1 0

pB (σ̂z(1,2) σ̂y(2,3) σ̂z(2,3))
0 0 1 0 1 1

cA (σ̂x(1,2) σ̂z(1,2) σ̂y(2,3) σ̂z(2,3))
1 0 1 0 1 1

cB (σ̂z(1,2) σ̂y(2,3))
0 0 1 0 1 0

c′B (σ̂z(1,2) σ̂x(2,3) σ̂y(2,3))
0 0 1 1 1 0

Table Apdx 1: Mapping between models and chromosomes used by a genetic algorithm. Example
shown for a three-qubit system with six possible terms. Model terms are mapped to binary genes: if
the gene registers 0 then the corresponding term is not present in the model, and if it registers 1 the
term is included. The top two chromosomes are parents, pA = 101010 (orange) and pB = 001011
(blue): they are mixed to spawn new models. We use a one–point cross over, shown at their
halfway points: the first half of pA is mixed with the second half of pB to produce two new children
chromosomes, cA, cB . Mutation occurs probabilistically: each gene has a 25% chance of being
mutated, e.g. a single gene (red) flipping from 0→ 1 to mutate cB to c′B . pA, pB were selected from
the population according to the their success in previous generations. The next generation of the
genetic algorithm will then include cA, c′B (assuming cA does not mutate) . To generate Nm models
for each generation, Nm/2 parent couples are sampled from the previous generation and crossed
over.

Appendix

A Genetic algorithm

Here we describe the GA protocol followed, including QMLA-specific aspects. All available Hamiltonian terms
compose the set ~T , such that models are uniquely identified by chromosomes, written as bit strings where each
bit is a gene corresponding to a single term. With

∣∣∣~T ∣∣∣ = n, there are 2n valid chromosomes (bit strings), which
constitute the population P . The QMLA model search phase is then simply the standard GA procedure:

1. Randomly select Nm chromosomes from P

(a) {Ĥi} ← H0

2. Assign generation µ← H0

3. For each Ĥµ
i ∈ µ

(a) Train Ĥµ
i via QHL

(b) Apply objective function: g(Ĥµ
i )

(c) Assign selection probability

i. si ∼ g(Ĥµ
i ).

ii. si is relative to other models in µ.

4. Spawn new models

(a) Select two parents from µ← p̂A, p̂B
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i. according to si of each model

(b) Cross-over parents to produce children

i. C(p̂A, p̂B)← ĉA, ĉB

(c) Probabilistically mutate children chromosomes

i. M(ĉA, ĉB)← ĉA, ĉB

5. Collect newly proposed children chromosomes

(a) {ĉi} ← Hµ+1

6. Determine top model from this generation

(a) Ĥµ
C = max

g(Ĥi)
{Ĥµ

i }.

7.

(a) if Ĥµ
C == Ĥµ−4

C

i. strongest model not improved upon in five generations

ii. move to 8.

(b) else if µ == xNg

i. move to 8.

(c) else

i. µ← µ+ 1

ii. return to 3.

8. Nominate the strongest model from the final generation

(a) Ĥ ′ = max
g(Ĥi)

{Ĥµ
i }.

We setNg = 32, Nm = 28, and use elitism rules, whereby the top two models on µ are automatically considered
on µ+ 1. If the top model is unchanged for five generations, we terminate the model search and delcare that
elite model as Ĥ ′, otherwise the top model from the final generation is nominated as Ĥ ′.

A.1 Objective function

We do not have access to an absolute measure of model quality, and therefore instead devise an objective function
based on the information available, and in particular the pairwise comparisons between candidate models, i.e.
Bayes factors Bij between Ĥi, Ĥj [13]. Where possible, it is preferable to minimise the number of Bayes factor
calculations due to the large overhead, so our objective function aims to rank models with incomplete comparison
information. We take inspiration from games such as chess and football, where individual competitors can be
assigned an absolute rating based on the matches played, without all individuals having met. In particular, we
use a modified Elo rating scheme [14], where we weight the points–transfer between individuals by log10Bij .
The rating of Ĥi, following comparison with Ĥj , is given by

R′i = Ri + log10(Bij)

(
Si −

1

1 + 10
Rj−Ri

400

)
, (2)

where Rk are the initial ratings of the candidates, and Si is the binary score of the BF comparison, from the
perspective of Ĥi, i.e. Si = 1, Sj = 0 ⇐⇒ Bij > 1. After a series of pairwise comparisons, models’ ratings
are mapped to an objective function by subtracting the rating of the poorest performing model on µ:

g(Ĥi) = Rµi −R
µ
min. (3)
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Finally all g(Ĥµ
i ) are normalised so that each model’s fitness can be interpreted as selection probability for the

branch µ, in the following selection mechanism.

A.2 Selection mechanism

Parents are selected from µ through roulette selection, easily visualised as pie charts representing each available
parent’s probability of selection, as in Fig. ??(a). We truncate to include only the strongest Nm

2
models to ensure

high quality offspring. Parents produce offspring through a one-point crossover, i.e. the first 1
k

genes from pA
are conjoined with the latter k−1

k
of pB , and we choose k ∈

(
n
4
, 3n

4

)
randomly for each pair of parents. Given

that k is not fixed, the same pair of parents can be selected multiple times with different k. Each gene from each
child chromosome has the opportunity to mutate, according to a 25% mutation probability. Within µ, models
are assigned selection probabilities {Ĥi : si}, reflecting their fitness relative to contemporary models, assessed

through the objective function. e.g. if the model space uses a chromosome of length 6,
(
Ĥi, Ĥj

)
can produce

offspring via one–point crossovers at positions 3 or 4; see Table. Apdx 1 for an example of crossover at position
3.

A.3 Crossover mechanism

We use a standard one-point crossover as outlined in Table Apdx 1. Given parents pA, pB , chosen via the
selection mechanism outlined above, the first 1

k
genes from pA are conjoined with the latter κ−1

κ
of pB , where

we choose κ ∈
(
n
4
, 3n

4

)
randomly for each pair of parents. Given that κ is not fixed, the same pair of parents

can be selected multiple times with different κ.

Following crossover, each gene in the childgren chromosomes have a mutation probability of 25%, although it
was found that this rate did not drastically effect the outcome of the genetic algorimth, compared with rates of
10%, 15% and 20%.
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