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Abstract

In the framework of flow simulations in Discrete Fracture Networks (DFN), we
consider the problem of identifying backbones. Backbones of a DFN are sub-
networks of fractures that preserve the main flow properties and can be fruitfully
used to reduce the computational cost of simulations or to analyze clogging and
waste storage problems. With a well-trained Neural Network for flux regression in
a DFN at hand, we use the Layer-wise Relevance Propagation method to compute
the expected relevance of each fracture to identify the backbone.

1 Introduction

Several applications related to underground analysis require to simulate flow in fractured media
(e.g. in geothermal applications, oil & gas production, storage of CO2). According to their features,
underground fractures can represent preferential paths or even flow obstructions, having a strong
impact on the flow intensity and directionality. For this reason, within this framework, we consider
the Discrete Fracture Network (DFN) model [1, 2 3], in which each fracture in the network is
characterized by its own geometrical and hydro-geological features. A DFN is a discrete model that
represents a network of n fractures as a set of 2D polygons F7, . .., F,, in a 3D domain D C R? (see
Figure I)), where each polygon F; is endowed with its own size and orientation, i.e. the fracture’s
geometrical properties, and with its own transmissivity parameter «;, that is the hydro-geological
parameter characterizing the flow facilitation through the fracture.

The demand for accurate flow simulations results in large networks is a challenging task. One of
the major issues depends on the geometrical complexity of the computational domain in realistic
networks, since it is often quite large and the relative position of the fracture can form very small and
narrow angles. Dealing with these complexities typically calls for quite cumbersome mesh generation
processes, unless using some specific approaches to overcome it; for the DFN simulations of this
work, we follow the approach described in [4} |5, 6], consisting in a reformulation of the problem
as a PDE-constrained optimization problem, in which the need for conforming mesh is completely
overcome. However, the computational cost of simulations on a large DFN is still expensive, and
it may be prohibitive for large numbers of simulations as it can be required, e.g., by Uncertainty
Quantification (UQ) analyses. Another issue related to DFN flow simulations is the lack of full-
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Figure 1: External surface of a natural fractured medium (left) and a DFN (center), NN built for
vector valued regression concerning flux prediction (right)

deterministic information about geometrical and hydro-geological properties of fractures. Then, this
information is only known in terms of probability distributions, sampling the data needed for actual
simulations from the available ones.

In this paper we propose a novel strategy to identify backbones, namely, sub-networks of fractures
with transport characteristics approximating the ones of the original DFN [7]]. These sub-networks
can be used in many applications and furnish precious and fundamental information for clogging
problems and for waste storage problems simulated through DFNs. In literature, many backbone
identification methods exist (see [8} 9} 10, (7 [11]); these methods use as criterion for identifying the
backbones the preservation of the minimum time spent by particles to flow from the source to the
sink of the network (also called “first passage time”’). However, in the framework of UQ here we
consider the total flux exiting the DFN as quantity of interest (Qol), varying the hydro-geological
properties of the fractures; therefore, the method that we propose identifies backbones such that their
exiting flux approximates the one of the full DFN, modelling transmissivities as random variables.

The new method is based on the Layer-wise Relevance Propagation (LRP) algorithm [[12}[13]] applied
to Neural Networks (NNs) trained for flux regression of DFNs, computing an approximation of the
expected relevance scores of all the features in the domain space. In this way, we use the LRP as a
feature selection method and we identify the backbone fractures as the ones with higher expected
relevance score. The validation of the LRP-based feature selection method is done comparing the
flow simulations run on the subnetworks with the fluxes of the full DEN.

2 Neural Networks for Flux Regression in Discrete Fracture Networks

Let us briefly describe the Neural Networks (NN) solving a flux regression problem of a test case
DFN. The DFN considered, called DFN158, consists of a fixed geometry with n = 158 fractures,
immersed in a cubic domain D with a 1000 meters long edge. Fractures have been randomly generated
using geological distributions of the geometrical features [14}[15]. The flow problem defined for
DFN158 is characterized by setting fixed boundary Dirichlet conditions on those fracture edges
obtained intersecting the DFN with the leftmost and rightmost faces of the domain (w.r.t. = axis).
Dirichlet conditions impose a fixed pressure difference of 10 meters between the same two faces of D,
characterizing the flux directionality; therefore, the resulting outflow fractures are fixed independently
of the fracture transmissivities: Fg, F12, F14, F78, Fo0, Fos, Fio7 (m = 7 outflowing fractures). The
fracture transmissivities «; for each fracture F; are modelled as random variables with log-normal
distribution [16,10] : logyq ki ~ N (—5,1/3).

We use a NN model to approximate by regression the m = 7 fluxes exiting from DFN158, for any
vector of fracture transmissivities & = [k, ..., %,] . We build a dataset D, given by N = 10000
pairs (K, ) € R™ x R™ obtained with a random sampling of N vectors k and computing the
corresponding fluxes ¢ through DFN simulations. The test set P is created randomly picking the
30% of D; the remaining elements are randomly split into the training 7 and validation V set,
[V| ~ 20%|D \ P|. The NN model is a fully-connected multi-headed NN, characterized by a “tree-
shape” structure as illustrated in Figure[I] (right) where the “trunk™ and the m “branches” have all the
same depth d. In the test case here illustrated, we consider a NN N* characterized by this architecture,
with a trunk/branch depth parameter d = 3 and all hidden layers given by n softplus units each; A/



Table 1: Dissimilarity between actual and predicted distributions for the outflux fractures

[ Fs | Fi2 | Fuu [ Fis | Foo | Fos | Fior |
D/ [ 0.0000 | 0.0003 | 0.0010 | 0.0002 | 0.0033 | 0.0379 | 0.0010 |

is trained on 7 using adam [17] and the early stopping regularization method (patience parameter
p* = 150). All the hyper-parameters have been chosen after a brief grid-search. As performance
measure we assume the mean of the mean weighted error
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on the test set, where @ € R™ is the prediction of N'* for any vector k. The value obtained for N'* is
0.0082, meaning that the mean error of the predicted flux is globally less than 1% of the total exiting
flux. In the framework of UQ, we compare also the distributions of predicted and actual fluxes; then

we introduce a dissimilarity measure defined as the ratio between the Kullback-Liebler divergence
(Dk1) between the two distributions and the entropy (€) of the actual one:

DxL(P5]|Q;)/E(F;) , 2)
where P; is the actual flux’s probability distribution of the j-th output flux and @); is the one of
the corresponding predictions. The ratio (Z) can be interpreted as a “relative information error”

when we describe P; using a random sampling from @;. Also with respect to (2), N shows good
performances (see Table E[), returning distributions ¢); very similar to P;, foreachj =1,...,m.

3 Layer-wise Relevance Propagation for Backbone Identification

Layer-Wise Relevance Propagation (LRP) is a subclass of the “eXplainable AI” (XAI) algorithms
[18]. Given a NN model, an input x and a score R(x) € R™ equal to the outflow flux predicted
by the NN on each outflux fracture, the LRP algorithm here used propagates the score backward
through the NN from the output layer to the input one redistributing it among all the input neurons.
The propagation takes into account the NN‘s weights and architecture and it assumes to preserve the
score sum between subsequent layers. The score assigned to each input neuron xj, indicates how
much it has contributed in computing the prediction of the NN. In the literature, LRP is applied with
respect to one input at a time: the relevance is considered as a characteristic of the input, therefore
the most relevant components can vary changing the input taken into account.

The propagation rule comprises the definition of messages between neurons of subsequent layers,
0,041
z('ej )
the output of 7 sent to j is relevant for the overall prediction. The relevance score RZ@) is given by the

sum of all the incoming messages:
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from neuron j of layer (£ + 1) to neuron i of layer £ . The message R represents how much

Therefore, the relevance of the component z; is given by the quantity R,EO) computed starting from
R(x). We choose the LRP algorithm named o — 8 rule [12, [13], fixing &« = 1,8 = 0. The idea
behind the feature selection proposed is to compute the expected relevance scores:

T
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for a random input vector £ € R™ with distribution p, approximated by its sampling mean 7.

From the point of view of the regression problem in DFNSs, the expected relevance score are computed
with respect to the inputs k ~ p and allows to order the input features according to their importance.
Then, LRP tells us that the contribution of some fractures is negligible in the DFN flux simulations;
eventually, by keeping the fractures with high scores and discarding the others, we obtain a subset of
fractures that can be identified as a backbone preserving the total exiting flux of the full DFN. The
validation of a backbone selected by the exposed procedure consist of running flow simulations on
this sub-network of fractures and comparing its flux distributions with the ones of the full DEN. If the
two simulated fluxes of the DFN and of the sub-DFN agree, we can say that the NN have captured
the main characteristics of the simulated physical phenomenon and LRP have indicated the most
important fractures for the flow propagation.
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Figure 2: Left: Fractures ordered by ascending value of r (the box in the top-left corner contains
the lowest 60%); in blue the labelled outflow fractures, in green the inflow fractures. Right: mean
relevance scores versus mean fluxes (mm? /) of outflow fractures.

4 Results

Let us analyze the vector of mean relevance scores 7 € R'%® computed on the whole dataset D. A
first observation reveals that all the fractures with exiting flux belong to the set of fractures in the top
25% with highest relevance scores (see Figure left). This observation has non-trivial consequences:
it indicates that A/* learnt to approximate the fluxes coherently with the topology of the fractures
network, even if it has no information about relationships between inputs and outputs; indeed, if F; is
the j-th boundary exit fracture, no information about the strict physical-based relationship between
r; and ¢; has been given to N'*. In addition, the mean relevance scores of the outflow fractures are
characterized by a non-negligible dependence on the mean value of the fracture fluxes (see Figure
[2}right). Focusing on the graphs that characterize the sub-networks given by the set of fractures in
the top 25% , 50% , 75% relevance scores (Figure we observe that: 7) less relevant fractures are
mainly those belonging to “dead-end” branches of the original graph, since they are the first fractures
ignored when we keep the 75% most relevant ones; 7i) keeping 50% and 25% of the most relevant
fractures, fractures belonging to source-sink paths (i.e. paths from any inlet fracture to any outlet
fracture) are also ignored, thus reducing the number of these paths but leaving always at least one of
them; 7i3) N'* seems to have understood that some bottleneck nodes are fundamental for the existence
of a source-sink path, since these fractures belong to the top 25% relevance scores.
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Figure 3: Graphs of fractures networks. Relevance scores: top 100%, 75%; bottom 50%, 25%.



Finally, in order to confirm that the detected sub-networks are actually backbones of DFN158, we
run numerical simulations on all the sub-DFNs, assuming input transmissivities equal to the ones in
the original D restricted to the remaining fractures. The results show a good preservation of both the
mean and standard deviation of the original total flux for all the sub-DFNs; indeed, the sub-networks
given by the 75% ,50% , 25% most relevant fractures preserve the mean total exiting flux with the
96.61%, 94.26%, 85.62% and a flux standard deviation with the 99.78%,99.01%, 97.85% of the
original one, respectively.

Broader Impact

The method proposed can have useful applications in many geological clogging and storage problems,
since it takes into account not only the graph connections of the DFN but also the stochasticity of the
fractures hydro-geological properties. Going beyond the DFN context, an interesting aspect of this
work is the novel application of the LRP algorithm as feature selector; indeed, we used an eXplainable
Al algorithm to understand the most relevant input features of a numerical simulator, through a NN
trained to approximate the simulator. This new application of XAI algorithms and NNs can have
interesting implications, first of all concerning the dimensionality reduction of high dimensional
problems. In a broader sense, we argue that the coupling between model-based simulations and
data-driven machine learning algorithms could provide a powerful and insightful approach both to the
explainability of Al, by integrating formalised field knowledge in the actual learning paradigm, and
the integration of Al into simulable systems as the engineered ones. In addition the usage of machine
learning and eXplainable Al algorithms allow to give a new meaning to go “forward”, towards the
prediction, or “backward”, towards the input, giving insights about the main or negligible components
of the global problem.
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