Discrete Fracture Network insights by eXplainable AI

NIPS 2020 Workshop Machine Learning and the Physical Sciences - 11st December 2020

Berrone S.¹, Della Santa F.¹, Mastropietro A.^{1,2}, Pieraccini S.¹, Vaccarino F.^{1,3}.

¹Politecnico di Torino, ²Addfor S.p.A., Torino, ³ISI Foundation, Torino

Introduction

Underground analysis of fractured media requires flow simulations (e.g. applications geothermal applications, oil & gas production).

Discrete Fracture Networks (DFN) are discrete models composed by a network of 2D polygonal fractures in a 3D domain, that can accurately simulate the flow of a fracture medium.

The reformulation by [Berrone, Pieraccini, Scialo' 2013, 2014, 2016] guarantees advantages but numerical solutions of DFN are still prohibitive for the large number of simulations required by Uncertainty Quantification (UQ) analyses.

Figure 1: surface of a natural fractured medium (left) and a DFN (right)

Major Issues

Fracture media cannot be fully described, then:

- Generation: lacks of full deterministic data
 ⇒ DFNs stochastically generated.
 - , Di i is sudditasticatify Scholatea.
 - \Longrightarrow Uncertainty Quantification (UQ)

Quantify the uncertainty of stochastic generation

• Simulation: complex computational domain & expensive computations

Reduce the DFN complexity

⇒ Backbone Identification

Main Target: Backbone Identification

Backbone B: sub-network of fractures with transport characteristics approximating the original DFN

- **DFN158**: Fix the DFN geometry with n = 158 fractures randomly generated from geological distributions (7 outflow fractures).
 - Assume varying fracture trasmissivities $\log_{10} \kappa_i \sim \mathcal{N}(-5, 1/3)$.
- Flow Simulation: fixed boundary Dirichlet conditions of fixed pressure ΔH between influx and outflux fractures.
- Backbone validation: run flow simulations of fractures subnetwork and compare ϕ , ϕ_B .

 ϕ , ϕ_B exiting flux distributions of full DFN and Backbone:

$$\Longrightarrow \phi \approx \phi_B$$

NN for Flux Regression in DFN

Use a Neural Network (NN) for regression of exiting fluxes $\varphi \in \mathbb{R}^m$ from DFN158

• Neural Network Fully connected multi-headed, tree-shaped architecture, trunk and branches depth 3, 158 units × layer, softplus activation, Adam optimizer, early stopping with patience 150.

	\mathcal{F}_8	\mathcal{F}_{12}	\mathcal{F}_{14}	\mathcal{F}_{78}	\mathcal{F}_{90}	\mathcal{F}_{98}	\mathcal{F}_{107}
$D_{\mathrm{KL}}/\mathcal{E}$	0.0009	0.0003	0.0010	0.0002	0.0033	0.0379	0.0010

Table 1: Dissimilarity between ϕ , $\hat{\phi}$, actual and predicted outflux distributions; D_{KL} : KL divergence between ϕ , $\hat{\phi}$; \mathcal{E} : entropy of ϕ

LRP for Backbone Identification

• Local algorithm of eXplainable AI

Layer-wise Relevance Propagation (LRP) [Bach, 2015]:

$$R_i^{(\ell)} = \sum_{j \in (\ell+1)} R_{i \leftarrow j}^{(\ell, \ell+1)}, \quad \text{neuron } i \in \ell \text{ layer.}$$

• Here extend to global explanation:

Expected Relevance as a feature selection algorithm:

• Overall pipeline for **Backbone Identification**:

Results

Figure 2: Fractures ordered by ascending value of r (top-left corner: lowest 60%); (blue) labelled outflow fractures; (green) inflow fractures.

Outflow fractures are in the top-25% of expected relevance

 \Rightarrow NN approximates fluxes coherently with the DFN topology.

Figure 3: Graphs of DFN158 (top-left) and Backbones with top expected relevance: 75% (top-right), 50% (bottom-left), 25% (bottom-right).

NN seems understanding that some bottleneck nodes are fundamental: a source-sink path is kept for the backbone top 25% expected relevance.