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Problem Statement
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Goal : To train a neural network f5(.) to learn the mapping fg: x,z = y e V% . . Inconsistency
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Baseline Methods : Physical Constraint

1. Conditional Generative Adversarial Net (cGAN) :

* cGAN-PID again outperforms all the baselines in terms of both test
mean RMSE and test physical inconsistency.
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2. Training cGAN with Physics Loss function (cGAN-PhyLoss) [ o ; - . , | |
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. : —_— In-distribution Out-of-distribution * Choice of the transformation function f(.) can be explored.
Physms-lnformed Discriminator (Pl D) Training/Test Split Training/Test Split * Ayny can be adaptively changed during the training process.

o e CcGAN-PID can be extended to work with incomplete physics.
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Key Idea : We add an additional input n,y,, to the discriminator D.
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The motivation of adding Nphy is to aid the discriminator such that it not SMgVEy +sMpVEy = =mavi, +smyvp;
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only distinguishes between a real and a fake sample by learning the
underlying data distribution but also uses the additional physical

knowledge (n,,y) to make the distinction.
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