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Problem Statement

Physics-Informed Discriminator (PID)

Goal : To train a neural network 𝑓𝜃(. ) to learn the mapping 𝑓𝜃: 𝑥, 𝑧 → 𝑦
to approximate the posterior distribution of the outputs 𝑃 𝑓𝜃 𝑥 𝑥, 𝑧 ,
where 𝑧 is a latent variable sampled from a prior distribution 𝑧~𝑝 𝑧 .

Baseline Methods :
1. Conditional Generative Adversarial Net (cGAN) :

2. Training cGAN with Physics Loss function (cGAN-PhyLoss) [1]:

min
𝐺

max
𝐷

𝔼𝑧~𝑝𝑧(𝑧) log 1 − 𝐷 𝑥, 𝐺 𝑥, 𝑧 +𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) log𝐷(𝑥, 𝑦)

min
𝐺

max
𝐷

𝔼𝑧~𝑝𝑧(𝑧) log 1 − 𝐷 𝑥, 𝐺 𝑥, 𝑧 +𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) log𝐷(𝑥, 𝑦)

+𝜆𝑝ℎ𝑦PhyLoss(𝑥,  𝑦)

Key Idea : We add an additional input 𝑛𝑝ℎ𝑦 to the discriminator 𝐷.

The motivation of adding 𝑛𝑝ℎ𝑦 is to aid the discriminator such that it not

only distinguishes between a real and a fake sample by learning the
underlying data distribution but also uses the additional physical
knowledge (𝑛𝑝ℎ𝑦) to make the distinction.

𝑛𝑝ℎ𝑦 = 𝑓(𝜆𝑝ℎ𝑦PhyLoss 𝑥,  𝑦 )

Monotonic function.

We use 𝑛𝑝ℎ𝑦 = 𝑒−𝜆𝑝ℎ𝑦PhyLoss 𝑥,  𝑦

Datasets
Synthetic Dataset

𝑧 = sin 𝑥 + sin 𝑦

𝑥2 + 𝑦2 + 𝑧2 = 4

Target Function

Physical Constraint

Collision Dataset[3[

In-distribution 
Training/Test Split

Out-of-distribution 
Training/Test Split

cGANs suffer from mode collapse, so we trained a network 𝑄: 𝑥,  𝑦 → 𝑧
The network Q delivers stability in the training process and provides a
variational approximation over the latent variable z[2].

The overall objection function of cGAN-PID:

min
𝐺

max
𝐷

𝔼𝑧~𝑝𝑧(𝑧) log 1 − 𝐷 𝑥, 𝐺 𝑥, 𝑧 , 𝑛𝑝ℎ𝑦

+𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) log 𝐷(𝑥, 𝑦, 1) + 𝜆𝑄𝔼𝑧~𝑝𝑧(𝑧)[(𝑧 − 𝑄 𝑥, 𝐺 𝑥, 𝑧 )2]

Results

Synthetic Dataset

Collision Dataset

Conclusions and Future Works

• cGAN-PID outperforms all the baselines in terms of both test mean
RMSE and test physical inconsistency.

• cGAN-PID also shows reduced sensitivity to random initializations.

*All results are averaged over 10 random runs

Sensitivity of hyper-parameter

• cGAN-PID is less sensitive to the
choice of hyper-parameters.

• cGAN-PID uses physics loss in
optimizing both the generator G
and discriminator D.

• cGAN-PID again outperforms all the baselines in terms of both test
mean RMSE and test physical inconsistency.

Proposed architecture of cGAN-PID:

• We propose an alternative (perhaps more natural) way of incorporating 
physics into the adversarial learning framework

• cGAN-PID demonstrates lower sensitivity to the choice of hyper-
parameters.

• Choice of the transformation function 𝑓(. ) can be explored.
• 𝜆𝑝ℎ𝑦 can be adaptively changed during the training process.

• cGAN-PID can be extended to work with incomplete physics.


