Global Earth Magnetic Field Modeling and Forecasting with Spherical Harmonics Decomposition

Panagiotis Tigas* OATML University of Oxford, UK

Yarin Gal OATML University of Oxford, UK

Siddha Ganju NVIDIA Corporation Santa Clara, CA, USA

PROBLEM SETTING

Motivation

Geoeffectiveness characterizes impact of solar storms on terrestial systems, defined on a global scale through "geomagnetic indices" that give an indication of activity. Driven by geomagnetic field perturbations, measured by ground magnetometers on Earth's surface.

Challenge

Disturbances starting from the Sun reprocessed by Earth's magnetospere reach the ground: (1) Single spatial point measurement of the solar wind a proxy for the 3D solar wind structure. (2) Perturbations on the ground sampled sparsely by magnetometers. (3) Need to *connect the dots* from the solar wind to the global impact of Earth.

Contributions

1. Spherical Harmonics based, compressed sensing technique to recover global maps of the geomagnetic perturbation from sparse measurements. Improve of temporal candence by >10x. 2. Deep Spherical Harmonics model for forecasting geomagnetic disturbances from solar wind data, improving over the stateof-the-art [3] by 14.53% (SuperMAG[1] evaluation) and 24.35% (MHD evaluation)

Téo Bloch* University of Reading, UK

> Ryan M. McGranaghan ASTRA LLC Louisville, CO, USA

https://sites.google.com/view/geoeffectivenet/

RECONSTRUCTION

Data

- 1. SuperMAG [1] measurements (data from 2013)
- 2. MHD simulation (OpenGGCM) for same dates

Fig 1. MHD simulation sampled at SuperMAG locations as input for reconstruction

Method

LASSO regression on Spherical Harmonics to obtain sparse representation of global ΔB .

- Hyperparameters: Max no. of modes and LASSO penalty α.
- Parameter sweeps to minimize L1 error and maxximize coefficient of determination (R2) using least mossible number of modes.
- Find the "knee" of performance enhancement.

FRONTIER DEVELOPMENT

Google Cloud Science for a changing world

Vishal Upendran* IUCAA Pune, India

> Mark C. M. Cheung Lockheed Martin ATC Palo Alto, CA, USA

	FOR
Solar wind	
parameters	GRU

Model: GRU-based RNN to MLP **Input:** 25 mins long past Solar Wind data [2] Output: Spherical Harmonics of global geomagentic perturbations of 20 minutes into the future.

SuperM

Ours. Weimer [2013] model

 Table 1. Forecasting model Performance

REFERENCES

- (2012).
- ment." cosp 40 (2014): C0-1.
- 120.

Banafsheh Ferdoushi* University of New Hampshire Durham, NH, USA

> Asti Bhatt SRI International Menlo Park, CA, USA

FORECASTING

Sampled Prediction

AG	(val) RMS (nT) \downarrow	MHD	RMS (nT) \downarrow
_1	24.23 28.35		27.02 35.72

1. Gjerloev, J. W. "The SuperMAG data processing technique." Journal of Geophysical Research: Space Physics 117.A9

2. Papitashvili, Natasha, Dieter Bilitza, and Joseph King. "OMNI: A Description of Near-Earth Solar Wind Environ-

3. Weimer, Daniel R. "An empirical model of ground-level geomagnetic perturbations." Space Weather 11.3 (2013): 107-