Global Earth Magnetic Field Modeling and Forecasting with Spherical Harmonics Decomposition

Panagiotis Tigas*
OATML
University of Oxford, UK

Yarin Gal
OATML
University of Oxford, UK

Siddha Ganju
NVIDIA Corporation
Santa Clara, CA, USA

Ryan M. McGranaghan
ASTRA LLC
Louisville, CO, USA

Mark C. M. Cheung
Lockheed Martin ATC
Palo Alto, CA, USA

Asti Bhatt
SRI International
Menlo Park, CA, USA

PROBLEM SETTING

Motivation
Geoeffectiveness characterizes impact of solar storms on terrestrial systems, defined on a global scale through “geomagnetic indices” that give an indication of activity. Driven by geomagnetic field perturbations, measured by ground magnetometers on Earth’s surface.

Challenge
Disturbances starting from the Sun reprocessed by Earth’s magnetosphere reach the ground: (1) Single spatial point measurement of the solar wind a proxy for the 3D solar wind structure. (2) Perturbations on the ground sampled sparsely by magnetometers. (3) Need to *connect the dots* from the solar wind to the global impact of Earth.

Contributions
1. Spherical Harmonics based, compressed sensing technique to recover global maps of the geomagnetic perturbation from sparse measurements. Improve of temporal cadence by >10x.

Data
2. MHD simulation (OpenGGCM) for same dates

Method
LASSO regression on Spherical Harmonics to obtain sparse representation of global ΔB.
- **Hyperparameters**: Max no. of modes and LASSO penalty α.
- Parameter sweeps to minimize L1 error and maximize coefficient of determination (R2) using least possible number of modes.
- Find the “knee” of performance enhancement.

REFERENCES

https://sites.google.com/view/geoeffectivenet/