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2. As small N as possible: Since, in theory, an infinite number of modes can fit the observations,
but a parsimonious model is required to limit overfitting. Furthermore, we would not want
unnatural, localized artifacts due to high number of modes, thereby motivating a constraint
on n.

To mitigate constraint (1), we apply a Lasso regression technique [Tibshirani, 1996] with the spherical
harmonic functions as the basis.

Figure 3: L1 error (left) and R2 (right) "knee" determination.

The Lasso regression comes with
a regularization term ↵k~ak1, where
k~ak1 is the L1-norm of the coeffi-
cients and ↵ > 0 is a hyperparame-
ter. This, and constraint (2) are miti-
gated by varying both ↵ and the maxi-
mum number of modes N , and search-
ing for a knee in a defined error met-
ric, subject to the smallest maximum
modes. The sweep parameters are de-
tailed in Table. 2, and two metrics are used – Maximum L1 error across all stations and time, and
maximum R2 metric (coefficient of determination) across all time steps. The maximum L1 error tells
us the worst performance across the dataset, and thus we seek the most acceptable worst possible
performance. As shown in Fig. 3, the "knee of goodness" can be seen corresponding to ↵ = 0.1, and
20 maximum modes. These parameters are fixed in our analysis.

An example reconstruction of the data from 2017, considering stations above 40 is shown in Fig. 2.
Here, we compare the north facing component of @d/@t from SuperMAG and its reconstruction.

Similarly, the comparison of spherical harmonic reconstruction for the MHD simulation is shown in
Fig. 4. Note here, that the reconstruction is performed by sampling the MHD simulation at locations
of SuperMAG stations alone.

3.2.2 Forecasting

Next, we construct a forecasting model which uses solar wind data ( OMNI ) to forecast the global
magnetic field perturbation. For this experiment we use a similar setup as Weimer [2013] model . We
feed 25 minutes of solar wind activity into a Gated Recurrent Network (GRU) to map the sequence
into an embedding vector. We then feed the embedding into a Multilayer Perceptron (MLP) to output
the spherical harmonics coefficients which model the global magnetic field perturbation; specifically
we focus on north component of @d/@t as a proof of concept. In contrast to Weimer [2013] model ,
we use the whole sequence as input to a non-linear autoregressive model and we do not apply feature
engineering to the OMNI data. Instead we use the raw features (see appendix for detailed list of
features). The architecture can be seen in fig. 1.

We benchmark this work against the state-of-the-art empirical model by Wiemer et al. [Weimer,
2013]. To evaluate the performance we first compare on the validation set on SuperMAG but also we

compare on simulations conducted with MHD model for two weeks worth of activity. The results are
summarized in table 1.

4 Results And Discussion

Table 1: Forecasting model performance

Model SuperMAG (val) RMS (nT) # MHD RMS (nT) #

Ours. 24.23 27.02
Weimer [2013] model 28.35 35.72

With this work, we show and evaluate the reconstruction of the global magnetic perturbation field using
spherical harmonics with LASSO regularization to promote sparsity in the coefficients. We show that
it is possible to reconstruct from sparse measurements like the ones provided by SuperMAG stations,
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CURRENT MODELS

RECONSTRUCTION
Data
1. SuperMAG [1] measurements (data from 2013)
2. MHD simulation (OpenGGCM) for same dates

Fig 1. MHD simulation sampled at SuperMAG locations as input for reconstruction

PROBLEM SETTING

Fig 2. 20 maximum modes and α = 0.1 selected for this work

Motivation
Geoeffectiveness characterizes impact of solar storms on terres-
tial systems, defined on a global scale through ‘‘geomagnetic in-
dices’’ that give an indication of activity. Driven by geomagnet-
ic field perturbations, measured by ground magnetometers on 
Earth’s surface.

Challenge
Disturbances starting from the Sun reprocessed by Earth’s magne-
tospere reach the ground: (1) Single spatial point measurement of 
the solar wind a proxy for the 3D solar wind structure. (2) Pertur-
bations on the ground sampled sparsely by magnetometers. 
(3) Need to connect the dots from the solar wind to the global im-
pact of Earth.

 
Contributions
1. Spherical Harmonics based, compressed sensing technique to re-

cover global maps of the geomagnetic perturbation from sparse 
measurements. Improve of temporal candence by >10x.

2. Deep Spherical Harmonics model for forecasting geomagnet-
ic disturbances from solar wind data, improving over the state-
of-the-art [3] by 14.53% (SuperMAG[1] evaluation) and 
24.35% (MHD evaluation)
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Table 1. Forecasting model Performance

Solar wind 
parameters

Predictions
Sampled

Predictions

Method 

LASSO regression on Spherical Harmonics to obtain sparse 
representation of global ΔΒ.
•   Hyperparameters: Max no. of modes and LASSO penalty α.
• Parameter sweeps to minimize L1 error and maxximize coef-

ficient of determination (R2) using least mossible number of 
modes.

• Find the ‘‘knee’’ of performance enhancement.

Model: GRU-based RNN to MLP
Input: 25 mins long past Solar Wind data [2] 
Output: Spherical Harmonics of global geomagentic perturba-
tions of 20 minutes into the future.

1. Gjerloev, J. W. “The SuperMAG data processing technique.” 
Journal of Geophysical Research: Space Physics 117.A9 
(2012).

2. Papitashvili, Natasha, Dieter Bilitza, and Joseph King. 
“OMNI: A Description of Near-Earth Solar Wind Environ-
ment.” cosp 40 (2014): C0-1.

3. Weimer, Daniel R. “An empirical model of ground‐level ge-
omagnetic perturbations.” Space Weather 11.3 (2013): 107-
120.

https://sites.google.com/view/geoeffectivenet/


