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Abstract

Optical multi-layer thin films are widely used in optical and energy applications
requiring photonic designs. Engineers often design such structures based on
their physical intuition. However, solely relying on human experts can be time-
consuming and may lead to sub-optimal designs, especially when the design
space is large. In this work, we frame the multi-layer optical design task as a
sequence generation problem. A deep sequence generation network is proposed
for efficiently generating optical layer sequences. We train the deep sequence
generation network with proximal policy optimization to generate multi-layer
structures with desired properties. The proposed method is applied to two energy
applications. Our algorithm successfully discovered high-performance designs,
outperforming structures designed by human experts in task 1, and a state-of-the-art
memetic algorithm in task 2.

1 Introduction

Optical multi-layer films have been widely used in many applications, such as broadband filtering [1],
photovoltaics [2], radiative cooling [3], and structural colors [4]. The design of optical multi-layer
films is a combinatorial optimization problem that requires one to choose the best combination of
candidate materials and layer thicknesses to form a multi-layer structure. Researchers and engineers
often make such designs based on their physical intuition. However, a completely human-based
design process is slow and often leads to sub-optimal designs, especially when the design space
is enormous. Thus, computational methods for designing optical multi-layer structures, including
evolutionary algorithms [5, 6, 7], needle optimization [8], and particle swarm optimization [9], have
been proposed to tackle this problem. All of these previous methods frame the optical design task as
an optimization problem and aim to synthesize a structure that meets user-specified design criteria.
However, these methods for optical design are based entirely on hand-crafts heuristics, i.e., they do
not learn a model to solve the design problems. When the heuristics are sub-optimal for a task, the
search process may fail to identify a high-performance design.

In contrast, deep reinforcement learning (DRL) is a learning framework that learns to solve complex
tasks through a trial-and-error process. It is proven to be highly scalable for solving large-scale and
complicated tasks [10, 11]. Researchers have successfully applied DRL to various combinatorial
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Figure 1: Illustration of two energy applications of optical multi-layer films (a) and sequence
generation proces for optical multi-layer thin film designs. (a) For solar thermal panels, we can use
multi-layer films as ultra-wideband absorbers to enhance light absorption efficiency. For incandescent
light bulbs, we can coat multi-layer films on them to improve luminous efficiency by reflecting
infrared light while transmitting visible light. (b) The generation process will stop when either the
EOS token is sampled, or the length of the sequence reaches the maximum allowed length L.

optimization problems [12, 13, 14, 15]. Unlike heuristic-based search, reinforcement learning
methods learn a model using the reward signal [16] and do not depend on hand-crafted heuristics.
On some combinatorial optimization tasks, DRL has been shown to outperform classic heuristic
search methods [17]. Recently, researchers applied DRL on designing optical devices with a structure
template [18, 19], where the number of layers is fixed. However, when designing the optical multi-
layer films, we often do not know the optimal structure template. Thus, the previous DRL approaches
are not suitable for multi-layer designs.

Noticing that the multi-layer optical design task is equivalent to a sequence generation problem, we
propose a DRL method called Optical Multi-layer Proximal Policy Optimization (OML-PPO) that
can generate near-optimal multi-layer structures. We applied the proposed method to two optical
design tasks that are relevant to energy applications (Figure 1a): 1) ultra-wideband absorbers that
can enhance light-harvesting efficiency, e.g. for thermal photovoltaics and photothermal energy
conversion 2) incandescent light bulb filters that can improve light bulb efficiency in emitting visible
light. On these two tasks, we show that OML-PPO outperforms existing human expert designs and a
state-of-the-art memetic algorithm.

2 Proposed Approach

Multi-layer films can be represented as sequences. Each layer is written as sl = (ml, dl). Thus,
an N -layer structure is S = {(m0, d0), (m1, d1), (m2, d2), · · · , (mN−1, dN−1)}, where ml and dl
denote the material and the thickness of the l-th layer (counting from the top), respectively. When
designing optical multi-layer films, we hope to synthesize a sequence that has the desired target
spectral response T̃ . Towards this end, we train a sequence generation network based on a GRU [20]
with reinforcement learning[16]. The process for generating an optical layer sequence is illustrated in
Figure. 1b.

Non-repetitive gating To explore the design space more efficiently, we introduce a non-repetitive
gating function that removes the logit element corresponding to the most recently sampled material
to prevent the sequence generator from generating the same materials in a row. This gating function
is a matrix INR ∈ R|M|×(|M|+1) formed by removing the row corresponding to the most recently
sampled material from an identity matrix. When multiplied with the logits vector σml

, the element
corresponding to that material will be removed, i.e., σ′ml

= INR · σml
∈ R|M|. Then, we pass the

transformed logit vector σ′ml
to the softmax layer to obtain the sampling probability. By doing so,

we set the sampling probability for the recurring material to 0. With the non-repetitive gating, the
generated material sequence is guaranteed to have different materials for adjacent layers.

Auto-regressive generation of material and thickness Because the proper thickness of a layer
should depend on the material, we input the sampled material ml to the thickness MLP in addition
to the hidden state hl. A similar approach has been applied in RL problems where the actions are
dependent on each other [11]. Instead of using a one-hot vector to represent the material, we train a
material embedding matrix emb ∈ R|M|×d together with the sequence generator network.
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Figure 2: Neural network architectures for generating optical multi-layer films (a) and design
generation pipeline (b). (a) Built-upon the baseline architecture (left), our proposed model (right)
adds a non-repetitive gating function and auto-regressive connection between the sampled material
and the thickness MLP. (b) Pipeline of the sequence generator training process.

Reinforcement learning training We train the sequence generation network with reinforcement
learning. We set the reward to be 0 for all generation steps except the final step. At the final step (i.e.,
the structure S has been completely generated), we compute the spectrum of the generated structure
with an optical spectrum calculation package TMM [21] and assign the final reward based on how
well the structure spectrum matches with the target spectrum, i.e.,

G(S) = 1− 1

K

∑
k=0

1

J

J−1∑
j=0

|TS(λj , δk)− T̃ (λj , δk)|, (1)

where TS(λj , δk) is the spectrum of the generated structure S at wavelength λj under incidence
angle δk. Because T ∈ [0, 1], the cumulative reward is always non-negative. The reward value
will become higher as the spectrum TS gets closer to the target spectrum T̃ until it reaches 1 when
the structure spectrum perfectly matches with the target spectrum. We use a state-of-the-art policy
gradient algorithm PPO [22] to train the sequence generation network. Similar to the active search
approach in Bello et al. [12], we output the best structure discovered throughout the entire training
process (Figure 2b). Our model is implemented using PyTorch [23] and Spinning Up [24]. The data
used in this study and our code will be publicly available.

3 Experiment

We applied the proposed method to two optical design tasks that are relevant to energy applications,
i.e., 1) designing ultra-wideband absorbers and 2) designing incandescent light bulb filters. In task
1 ultra-wideband absorber design, we measure the quality of the designed structure by average
absorption. In task 2 incandescent light bulb filter, we calculate the visible light enhancement factor
to measure the performance of designed structures. We also did an ablation study to understand the
effect of non-repetitive gating and auto-regressive materials/thickness sampling.

Task 1: ultra-wideband absorber Firstly, we apply our algorithm to the task of designing an ultra-
wideband absorber for the wavelength range [400, 2000] nm. We choose the target spectrum as a
constant 100% absorption under normal light incidence angle (i.e., the light is shining at the absorber
at a right angle) to represent an ideal broadband absorber. This task has been previously studied by
Yang et al. [1] based on physical models, where the broadband absorption is achieved by overlapping
multiple absorption resonances and with an overall graded-index structure to minimize reflection.
The authors designed a 5-layer structure using MgF2, TiO2, Si, Ge, and Cr. The simulated average
absorption of their structure over the wavelength range is 95.37% under normal incidence. If not
specified otherwise, we assume normal incidence when reporting average absorption.

We hypothesize that, when choosing from a larger set of materials than used in the previous work [1],
it is possible to design a structure with higher average absorption than the human-designed structure.
Thus, we expanded the original material set [1] to allow 11 more materials, including Ag, Al, Al2O3,
Fe2O3, HfO2, Ni, SiO2, Ti, ZnO, ZnS, ZnSe. We set the available discrete thicknesses D to be
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{15, 20, 25, . . . , 200} nm with a total of 38 different values. When training the sequence generator,
we set the learning rate to 5× 10−5 and the maximum length to L = 6. The material embedding size
d is set to 5, i.e., embm ∈ R5. The generator is trained for a total of 3, 000 epochs with the batch size
set to be 1, 000 generation steps. We repeat the training for 10 runs with different random seeds. The
best structure discovered by the algorithm, exhibiting an average absorption of 97.64%, is {(SiO2,
115 nm), (Fe2O3, 70 nm), (Ti, 15 nm), (MgF2, 124 nm), (Ti, 148 nm)}. Its average absorption is
2.27% higher than expert designed structure. The spectrum under normal incidence are plotted in
Figure 3a.
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Figure 3: Spectrum of designed perfect absorber (a), incandescent light bulb filter (b), and emissive
power spectrum of the light bulb filter (c). R: reflection, T: transimission, A: absorption. (a) The
designed structure achieves almost perfect absorption between 500 to 1,600 nm. (b) The structure
designed by our proposed algorithm achieves higher reflectivity in the infrared range than the structure
designed by a memetic algorithm. We compute the spectrum under two view factors f = 1 and
f = 0.95 (the ratio of light emitted by the light bulb filament that can reach the wall of the light bulb).
(c) The structure designed by OML-PPO achieves higher emissive power than the previously reported
structure.

Task 2: incandescent light bulb filter We further applied the proposed method to design a filter that
can enhance the luminous efficiency of incandescent light bulbs [25, 26]. The goal is to reflect the
infrared light emitted by the light bulb filament so that its energy can be recycled. To this end, we set
the target reflectivity to be 0% in the range [480, 700] nm, and 100% outside this range (Figure. 3b).
In this way, the infrared light, which cannot contribute to lighting, will be reflected back to heat up the
emitter. A similar design has been previously studied [26, 6]. We choose the same seven dielectric
materials as the available materials: Al2O3, HfO2, MgF2, SiC, SiO2, and TiO2 [6]. In Figure 3b, we
compare the average reflectivity normalized over all incidence angles (0 - 90 degree) of the 42-layer
structure designed with our algorithm and the 41-layer structure designed by a memetic algorithm
[6]. Our structure has a higher average reflectivity in the infrared range (> 780 nm) than the 41-layer
structure. Following a previous work[6], we calculated the enhancement factor for visible range (400
- 780 nm) under a fixed operating power. Our designed structure achieved an enhancement factor of
16.60 compared with 15.30 of a previously reported structure[6].

Ablation study On the ultra-wideband absorber design task, we conducted an ablation study to under-
stand the effect of non-repetitive gating and auto-regressive generation of materials and thicknesses.
We trained four different models: 1) OML-PPO with both non-repetitive gating and auto-regressive
generation, 2) non-repetitive gating only, 3) auto-regressive generation only, 4) neither non-repetitive
gating nor the auto-regressive generation. For each model, we repeated the training for ten times. The
maximum absorption values discovered by each model before finetuning are reported in Table 1. Both
non-repetitive gating and the auto-regressive material/thickness generation improve the performance
of the baseline model.

Table 1: Highest absorption values discovered by each algorithm across 10 runs. The mean average
absorption values and standard deviations of the 10 runs are reported.

Model OML-PPO Only Gating Only auto-regressive None (baseline)
Average Absorption 94.98%(0.99%) 94.05%(1.39%) 91.55%(1.14%) 91.03%(0.87%)
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4 Conclusion

We introduced a novel sequence generation architecture and a deep reinforcement learning pipeline to
automatically design optical multi-layer films. To the best of our knowledge, our work is the first to
apply deep reinforcement learning to design multi-layer optical structures with the number of layers
unfixed beforehand. On two real-life applications, we show that our proposed algorithm achieves
better performance than human experts and a state-of-the-art memetic algorithm. In the future, we
plan to apply the proposed algorithm for more complicated designs that involve micro-nano structures
[27].

Broader Impact

Optical multi-layer thin films are widely used in imaging and energy applications. With our proposed
algorithm, researchers can design multi-layer thin films automatically with higher performance than
existing approaches. In addition, we believe that our algorithm can be applied to many other optical
design tasks based on multi-layer structures.
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