Amplifying Statistics using Generative Models

Sascha Diefenbacher, Anja Butter (Heidelberg), Gregor Kasieczka, Ben Nachman (Berkeley), Tilman Plehn (Heidelberg)

Introduction

- Deep generative models are used to accelerate or augment slow physics simulators.
- If you train a generator using N examples and produce M, what is the statistical power of the M examples?
- Test this using simplified dataset
- For more information see the full paper on arxiv

Dataset

- Camel back function
- Smooth multimodal distribution, common in physics
- Define K quantiles for comparison
 - Intervals that each contains equal probability
- Sample: 100 camel back points
- Count points per quantile
- Compare quantile fractions to true values
- True fractions given by \(\frac{1}{K_{quant}} \)
- Baseline for comparison

Generative Model

- Trained on 100 data points from training samples
- Use regularization methods against overfitting (dropout, training noise, batch-statistics)
- Calculate quantile fraction from GANed points
- Quantile MSE: \(\frac{1}{K_{quant}} \sum_{j=1}^{K_{quant}} \left(\gamma - \frac{1}{K_{quant}} \right)^2 \)

Results

- 100 training samples, 100 fits, 100 GANs
- 10,000 GANed points equal to 150 training points
- Interpretation in terms of information:
 - Sample: only data points
 - Fit: data + true function
 - GAN: data + smooth function

Conclusion

- It makes sense to GAN significantly more events than we have in the training sample,
- Individual events carry less information than a training sample event.
- Net benefit, if the GAN sampling is sufficiently fast

Acknowledgments

We thank Mustafa Mustafa, David Shih, and Jesse Thaler for useful feedback on the manuscript. We further thank Ramon Winterhalder for helpful input during the early phases of the project. The research of AB and TP is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762 – TRR-257 Particle Physics Phenomenology after the Higgs Discovery. GK and SD acknowledge support by the DFG under Germany’s Excellence Strategy – EXC 2121 Quantum Universe – 390833306. BN is supported by the U.S. – Department of Energy, Office of Science under contract DE-AC02-05CH11231.