
• Camel back function

• Smooth multimodal distribution, common in 

physics

• Define K quantiles for comparison

• Intervals that each contains equal probability

• Training sample: 100 camel back points

• Count points per quantile

• Compare quantile fractions to true values

• True fractions given by

• Baseline for comparison

• Assumption about smoothness adds information

• GAN can interpolate between points

• Interpolation allows for amplification

• More quantiles ➔ less points per quantile

• GAN interpolation more impactful for sparse data

• High dimensional data often sparse

• Promising approach for higher dimensions

• 100 training samples,100 fits,100 GANs 

• 10,000 GANed points equal to 150 training points

• Interpretation in terms of information:

• Sample: only data points

• Fit: data + true function

• GAN: data + smooth function
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• Deep generative models are used to accelerate or 

augment slow physics simulators.  

• If you train a generator using N examples and 

produce M, what is the statistical power of the M 

examples?

• Test this using simplified dataset

• For more information see the full paper on arxiv

*

Dataset

*

• Trained on 100 data points from training samples 

• Use regularization methods against overfitting 

(dropout, training noise, batch-statistics)

• Calculate quantile fraction from GANed points

• Quantile MSE:

Results

Conclusion
• It makes sense to GAN significantly more events 

than we have in the training sample, 

• Individual events carry less information than a 

training sample event. 

• Net benefit, if the GAN sampling is sufficiently fast

Generative Model

1

𝐾quant
෍

𝑗=1

𝐾quant

𝑥𝑗 −
1

𝐾quant

2

1

𝐾quant

https://arxiv.org/abs/2008.06545

