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Abstract

A growing number of weak- and unsupervised machine learning approaches to
anomaly detection are being proposed to significantly extend the search program at
the Large Hadron Collider and elsewhere. One of the prototypical examples for
these methods is the search for resonant new physics, where a bump hunt can be
performed in an invariant mass spectrum. A significant challenge to methods that
rely entirely on data is that they are susceptible to sculpting artificial bumps from the
dependence of the machine learning classifier on the invariant mass. We explore two
solutions to this challenge by minimally incorporating simulation into the learning.
In particular, we study the robustness of Simulation Assisted Likelihood-free
Anomaly Detection (SALAD), one of our recently developed anomaly detection
methods, to correlations between the classifier and the invariant mass. Next, we
propose a new approach that only uses the simulation for decorrelation but the
Classification without Labels (CWoLa) approach for achieving signal sensitivity.

1 Introduction

Despite compelling experimental (e.g. dark matter) and theoretical (e.g. the hierarchy problem)
evidence for new phenomena at the electroweak scale, experiments at the Large Hadron Collider
(LHC) have not yet discovered any physics beyond the Standard Model (BSM). There are major
search efforts across LHC experiments [9, 12, 10, 20, 21, 19, 42], where most analyses target a
particular class of BSM models. While this work is well-motivated and continuing to improve in
sensitivity (in part due to machine learning [41, 34, 2, 48]), there is also a growing need for new
search strategies capable of discovery in unexpected scenarios.

A variety of automated anomaly detection techniques using innovative machine learning methods
are being proposed to cover the unexpected [25, 22, 23, 8, 26, 32, 36, 52, 16, 14, 35, 27, 46, 4, 28,
7,47, 3,51, 50, 40, 29, 49, 5, 17, 38, 55]. An important subset of these proposals targets resonant
new physics, where sideband methods can be used to estimate the SM background directly from
data. A key challenge facing such methods is that the machine learning classifiers must be relatively
independent from the resonant feature, for otherwise artificial bumps can be formed. Many automated
decorrelation methods have been proposed to ensure that classifiers are decorrelated from particular

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



features by construction [43, 30, 45, 54, 53, 15, 11, 57, 31, 56, 37, 33], but they may not apply
in all cases. In particular, weakly supervised approaches that learn directly on the signal region
cannot be simply combined with a decorrelation scheme because such an approach could degrade the
performance in the presence of a signal. A localized signal would manifest as a dependence between
the resonant feature and other features for classification, so forcing independence could eliminate
signal sensitivity.

In this paper, two weakly supervised approaches are studied: Classification without Labels
(CWoLA) [44, 22, 23, 8] and Simulation Assisted Likelihood-free Anomaly Detection (SALAD) [7].
CWOLA is a method that does not depend on simulation and achieves signal sensitivity by comparing
a signal region with nearby sideband regions in the resonance feature. As a result, CWOLA is
particularly sensitive to dependencies between the classification features and the resonant feature.
SALAD uses a reweighted simulation to achieve signal sensitivity. Since it never directly uses the
sideband region, SALAD is expected to be more robust than CWOLA to dependencies. In order to
recover the performance of CWOLA in the presence of significant dependence between the clas-
sification features and the resonant feature, a new method called simulation augmented CWoLa
(SA-CWoLA) is introduced. The SA-CWOLA approach augments the CWOLA loss function to
penalize the classifier for learning differences between the signal region and the sideband region in
simulation, which is signal-free by construction. All of these methods will be investigated using the
correlation test proposed in Ref. [47].

2 Methods

For a set of features (m, ) € R"*1, let f : R — [0, 1] be parameterized by a neural network. The
observable m is special, for it is the resonance feature that should be relatively independent from
f(x). The signal region (SR) is defined by an interval in m and the sidebands (SB) are neighboring
intervals.

All neural networks were implemented in KERAS [18] with the TENSORFLOW backend [1] and
optimized with ADAM [39]. Each network is composed of three hidden layers with 64 nodes each
and use the rectified linear unit (ReLLU) activation function. The sigmoid function is used after the
last layer. Training proceeds for 10 epochs with a batch size of 200. None of these parameters were
optimized; it is likely that improved performance could be achieved with an in-situ optimization
based on a validation set.

2.1 Simulation Assisted Likelihood-free Anomaly Detection (SALAD)

The SALAD network [7] is optimized using the following loss:

Lsaap[f] = — Z log(f(;)) — Z w(w;, m)log(l — f(xi)) (D

1€SR,data 7€SR,sim.

where w(x;, m) = g(x;,m)/(1 — g(x;,m)) are a set of weights using the Classification for Tuning
and Reweighting (DCTR) [6] method. The function g is a parameterized classifier [24, 13] trained to
distinguish data and simulation in the sideband:

Llgl=— > log(g(zi,m)) = > log(l—g(x:,m)). 2

1€SB,data 1€SB,sim.

The above neural networks are optimized with binary cross entropy, but one could use other functions
as well, such as the mean-squared error. Intuitively, the idea of SALAD is to train a classifier to
distinguish data and simulation in the SR. However, there may be significant differences between
the background in data and the background simulation, so a reweighting function is learned in the
sidebands that makes the simulation look more like the background in data.

2.2 Simulation Augmented Classification without Labels (CWoLa)

The idea of CWOLA [44] is to construct two mixed samples of data that are each composed of two
classes. Using CWOLA for resonant anomaly detection [22, 23], one can construct the mixed samples



using the SR and SB. In the absence of signal, the SR and SB should be statistically identical and
therefore the CWOLA classifier does not learn anything useful. However, if there is a signal, then it
can detect the presence of a difference between the SR and SB. In practice, there are small differences
between the SR and SB because there are dependencies between m and x and so CWOLA will only
be able to find signals that introduce a bigger difference than already present in the background.
The CWOLA anomaly detection strategy was recently used in a low-dimensional application by the
ATLAS experiment [8].

We propose a modification of the usual CWOLA loss function in order to construct a simulation-
augmented (SA) CWOLA classifier:

Lsacwoulfl == Y log(f(z:))— > log(l— f(x))

7€SR,data 1€SB,data
+A< S log(fa)+ Y logu—f(a:i))), 3)
1€SR,sim. 1€SB,sim.

where A > 0 is a hyper-parameter. The limit A — 0 is the usual CWOLA approach and for A > 0, the
classifier is penalized if it can distinguish the SR from the SB in the (background-only) simulation.
In order to help the learning process, the upper and lower sidebands are given the same total weight
as each other and together, the same weight as the SR.

3 Results

As a benchmark, 1500 signal events corresponding to a fitted significance of about 20 is injected
into the data for training. For evaluation, the entire signal sample (except for the small number
of injected events) is used. Figure 1 shows the performance of various configurations. The fully
supervised classifier uses high statistics signal and background samples in the SR with full label
information. Since the data are not labeled, this is not achievable in practice. A solid red line labeled
‘Optimal CWOLA’ corresponds to a classifier trained using two mixed samples, one composed of
pure background in the single region and the other composed of mostly background (independent
from the first sample) in the SR with the 1500 signal events. This is optimal in the sense that it
removes the effect from phase space differences between the SR and SB for the background. The
Optimal CWOLA line is far below the fully supervised classifier because the neural network needs
to identify a small difference between the mixed samples over the natural statistical fluctuations in
both sets. The actual CWOLA method is shown with a dotted red line. By construction, there is a
significant difference between the phase space of the SR and SB and so the classifier is unable to
identify the signal. At low efficiency, the CWOLA classifier actually anti-tags because the SR-SB
differences are such that the signal is more SB-like then SR-like. Despite this drop in performance, the
simulation augmenting modification (solid orange) with A = 0.5 nearly recovers the full performance
of CWOLA.

For comparison, a classifier trained using simulation directly is also presented in Figure 1. The
line labeled ‘Data vs. Sim.” directly trains a classifier to distinguish the data and simulation in the
SR without reweighting. Due to the differences between the background in data and the simulated
background, this classifier is not effective. In fact, the signal is more like the background simulation
than the data background and so the classifier is worse than random (preferentially removes signal).
The performance is significantly improved by adding in the parameterized reweighting, as advocated
by Ref. [7]. With this reweighting, the SALAD classifier is significantly better than random and is
comparable to SA-CWOLA. The Optimal CWOLA line also serves as the upper bound in performance
for SALAD because it corresponds to the case where the background simulation is statistical identical
to the background in data.

4 Conclusions

This paper has investigated the impact of dependencies between m;; and classification features
for the resonant anomaly detection methods SALAD and CWOLA. A new simulation-augmented
approach has been proposed to remedy challenges with the CWOLA method. This modification is
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Figure 1: A Receiver Operating Characteristic (ROC) curve (left) and significance improvement curve
(right) for various anomaly detection methods described in the text. The significance improvement
is defined as the ratio of the signal efficiency to the square root of the background efficiency. A
significance improvement of 2 means that the initial significance would be amplified by about a factor
of two after employing the anomaly detection strategy. The supervised line is unachievable unless
there is no mismodeling and one designed a search for the specific W’ signal used in this paper. The
curve labeled ‘Random’ corresponds to equal efficiency for signal and background.

shown to completely recover the performance of CWOLA from the ideal case where dependences are
ignored in the training. In both the SALAD and SA-CWOLA methods, background-only simulations
provide a critical tool for mitigating the sensitivity of the classifiers on dependences between the
resonant feature and the classifier features.

Each of the methods examined here have advantages and weaknesses, and it is likely that multiple
approaches will be required to achieve broad sensitivity to BSM physics. Therefore, it is critical to
study the sensitivity of each technique to dependencies and propose modifications where possible to
build robustness. This paper is an important step in the decorrelation program for automated anomaly
detection with machine learning. Tools like the ones proposed here may empower higher-dimensional
versions of the existing ATLAS search [8] as well as other related searches by other experiments in
the near future.

Broader Impact

The algorithms presented and discussed in this paper could be applied anywhere where a blinded
search for outliers is desired. In particular, they might be find applications as a candidate filter for a
job or university application; in this case, the algorithm might be able to asses objective quality while
explicitly blinded to non-candidate factors. Additionally, this method of semi-supervised detection
would be well suited to other physical sciences in which a generalized blind search for outliers is
desired.
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