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Abstract

We show how neural-network states can be used to calculate the dynamical
large-deviation functions of classical systems, which play the role of thermo-
dynamic potentials for trajectories. We use a recurrent neural network to obtain the
scaled cumulant-generating function for the dynamical activity of the Fredrickson-
Andersen model, a prototypical kinetically constrained model for glass formers,
in one dimension with high accuracy. These results offer a novel method for the
determination of large-deviation functions, and highlight the broad applicability of
the neural-network state ansatz.

1 Introduction

Whereas equilibrium systems are studied with ensembles of configurations, dynamical systems—
including glassy [1, 2, 3], driven [4, 5, 6, 7, 8], and biochemical systems [9, 10]—are studied with
ensembles of stochastic trajectories. Time-extensive trajectory observables, examples of which
include dynamical activity [1, 2, 11], entropy production [12, 13], or other currents [14, 15, 16],
characterize these trajectories. Large-deviation functions—the scaled cumulant-generating function
(SCGF) and rate function—describe the fluctuations of these observables, and play the role of
thermodynamic potentials for trajectories [17, 18]. Here, we demonstrate the use of the neural-
network state ansatz [19], which shall represent the long-time configurational probability distributions
associated with rare trajectories, to calculate these large-deviation functions. In particular, we will
study the large deviations of a time-extensive observable A, which is defined along a trajectory ω of
length t with K(ω) configurational changes as

A =

K(ω)−1∑
k=0

αxkxk+1
, (1)

with αxy the change in A when jumping between the discrete configurations x and y. Such an
observable is said to follow a large-deviation principle if in the limit of t → ∞ it follows the
distribution

P (A) ≈ e−tJ(a), (2)
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where a = A/t, and J(a) is the rate function which quantifies the exponential decrease of observing
atypical values of A [17]. The cumulants of A can in this limit be obtained as derivatives of the
scaled cumulant-generating function θ(s)

θ(s) = lim
t→∞

1

t
ln
〈
e−sA

〉
. (3)

The SCGF θ(s) and rate function J(a) are connected through a Legendre transform,
θ(s) = −mina{sa+ J(a)}.

Obtaining these rate functions is challenging for many physical systems, requiring the use of advanced
Monte Carlo methods based on e.g. cloning [20, 21, 22] or auxiliary dynamics [23, 24, 25]. Recently,
neural networks have been used to construct such auxiliary dynamics [26, 27, 28]. Alternatively, the
SCGF θ(s) can be obtained as the largest eigenvalue of a modified or “tilted” generator W s whose
matrix elements connecting microstates x and y are

W s
xy =Wxye

−sαxy (1− δxy)−Rxδxy. (4)

Here Wxy are the matrix elements of the original generator describing the dynamical process and
Rx =

∑
y 6=xWxy [29, 17, 30]. The SCGF can hence be obtained by solving the eigenproblem

W s|P s〉 = θ(s)|P s〉, where the right eigenvectors |P s〉 contain the configurational probabilities in
the long-time limit for trajectories conditioned on 〈a〉 = −dθ(s)/ds. The similarities between the
variational energy minimization in quantum systems and finding the SCGF as largest eigenvalue of a
tilted generator have led to the use of variational techniques for studying large deviations in dynamical
systems, in particular the density matrix renormalization group (DMRG), [31, 32, 33]. Inspired by
their recent applications in the variational optimization of quantum systems, we here demonstrate the
use of the neural-network state ansatz [19] for determining the SCGF of a one-dimensional dynamical
system.

2 Recurrent neural-network states

Artificial neural networks can be used as a variational ansatz by mapping configurations x ≡
(x1, . . . , xN ) of an N -site lattice system to their corresponding probability amplitude ψ(x), which
defines the state |ψ〉 =∑x ψ(x)|x〉. This ansatz has recently been shown to be capable of faithfully
representing highly entangled quantum systems [19, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53], and has found use in quantum state tomography [54, 55, 56, 57]. The
expressivity of the neural-network state ansatz depends on the architecture of the neural network, and
typical choices include restricted Boltzmann machines, fully-connected and convolutional neural
networks, and autoregressive neural networks. Here, we use autoregressive neural networks which are
popular architectural choices for complex machine learning tasks such as natural language processing,
sequence generation or handwriting recognition [58, 59, 60, 61, 62]. A state defined by such a network
can be sampled in parallel without Markov chains, which is particularly useful for physical regimes
where Markov chains struggle to propose uncorrelated configurations. Examples of autoregressive
neural networks include PixelCNN [51] and recurrent neural networks (RNN) [52, 53]. Here, we use
the RNN ansatz of [52, 53], which was shown to be highly efficient in the optimization of quantum
systems. An RNN is defined by its elementary building block, the RNN cell, which is a parametrized
non-linear function that sweeps over the lattice site by site. For a given configuration x, at each lattice
site i the RNN cell receives the “visible” state xi−1 from the previous site, as well as the “hidden” state
hi−1, which contains information from the previously encountered degrees of freedom and serves as a
form of memory. From this, the RNN cell calculates the hidden state for the current lattice site, hi, and
further processes this hidden state to obtain a conditional probability amplitude ψ(xi|xi−1, . . . , x1)
for a new visible state—depending entirely on xj<i encountered earlier on the lattice. A new visible
state is obtained by sampling from the distribution P (xi|xi−1, . . . , x1) = |ψ(xi|xi−1, . . . , x1)|2
which, together with the new hidden state, can be used as input for the next site. Starting from an
initial visible and hidden state, the whole lattice can be traversed in this way, which allows for highly
parallel sampling and calculation of probability amplitudes. The probability amplitude of the entire
configuration x with an autoregressive neural-network state is defined as

ψ(x) =

N∏
i=1

ψ(xi|xi−1, . . . , x1). (5)
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The expressivity of this neural network ansatz is determined by the choice of the RNN cell and by the
dimension of its hidden state vector dh, also known as the number of hidden units.

The weights of the neural network are updated according to the variational principle. The expectation
value of the tilted generator can be written as

〈ψ|W s|ψ〉 =
∑
x

|ψ(x)|2
∑
x′

W s
xx′

ψ(x′)

ψ(x)
(6)

≡
∑
x

|ψ(x)|2 θloc(x). (7)

The goal of our training routine is the maximization of this expectation value, as to obtain the SCGF
θ(s). This is done using variational Monte Carlo: given a parameterized state, ψW , we sample the
current value of 〈ψW |W s|ψW〉 ≡ θ̃(s) using NS samples {xS} drawn according to |ψW |2:

θ̃(s) ≈ 1

NS

∑
x∈{xS}

θloc(x). (8)

The gradients of θ̃(s) w.r.t. to the variational parametersW are then calculated as

∂W θ̃(s) =
2

NS

∑
x∈{xS}

∂W logψW(x)
(
θloc(x)− θ̃(s)

)
, (9)

and the parametersW are updated as to maximize θ̃(s). This is repeated until convergence is achieved,
at which point we obtain our best estimate for the SCGF θ(s).

3 Dynamical activity of the Fredrickson-Andersen model

The Fredrickson-Andersen (FA) model describes glassy dynamics by placing kinetic constraints on
the transitions between configurations of the system, which gives rise to slow relaxation [63, 64, 65].
On each lattice site, a binary spin can only flip up (resp. down) with rate c (resp. 1− c) if one of its
neighbouring spins is up, and this rate increases for each of its neighbours in the up state, see Fig. 1a.
These dynamics are described by the generator W , given by

W =
∑
i

(ni−1 + ni+1) [cσ
+
i + (1− c)σ−i − c(1− ni)− (1− c)ni], (10)

where ni is 1 if site i is in the up state and zero otherwise, and σ±i flips site i up or down. We work
with open boundary conditions by connecting each spin on the boundary of the lattice to a site in
the down state. The configuration with all sites in the down state is disconnected from the rest of
configuration space due to the kinetic constraints; we only consider dynamics without this state. In
the following, we will study the large-deviation properties of the dynamical activity of the FA model
in one dimension. The dynamical activity measures the number of spin flips during a trajectory of
time t, so that αxy = 1 in Eq. (1). The tilted generator W s (Eq. (4)) for the dynamical activity of the
FA model is then obtained by multiplying the off-diagonal elements of W with the factor e−s, and the
corresponding SCGF can be calculated as the largest eigenvalue of W s. A dynamical phase transition
separates an active and inactive dynamical phase at a size-dependent critical value of the tilting
parameter sc ≥ 0 [2, 32, 66, 67, 68], which is marked by a singularity in the SCGF. The dynamics
described by W s obey detailed balance, so that a similarity transformation P−1W sP = Hs —which
leaves the eigenvalue spectrum of W s unchanged—can be performed, which results in a Hermitian
matrix given by [2]

Hs =
∑
i

(ni−1 + ni+1) [e
−s
√
c(1− c)σxi − c(1− ni)− (1− c)ni], (11)

where σx is a Pauli matrix. As Hs is a Hermitian operator, the SCGF obtained through the variational
method results in a lower bound on the exact SCGF—whereas if it were obtained through W s, the
result can be above or below it—allowing for a straightforward comparison of the accuracy of the
RNN ansatz with other methods.
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Figure 1: (a) Example transition rates of the one-dimensional Fredrickson-Andersen model studied
in this work. (b) Scaled cumulant-generating function θ(s) per lattice site of the one-dimensional
Fredrickson-Andersen model with a recurrent neural network ansatz (marks) and DMRG (lines)
for various values of s, and system sizes between L = 16 and L = 128. Inset: Difference
ε ≡ θ(s)DMRG/L− θ(s)RNN/L between DMRG calculations and the RNN ansatz.

4 Results

We demonstrate the success of the neural-network state ansatz in computing large deviation functions
by obtaining the SCGF for the dynamical activity of the FA model on a one-dimensional lattice. We
optimize RNN states to find the largest eigenvalue of Hs (Eq. (11)), at c = 0.1 and for values of s
corresponding to both the active and inactive dynamical phases. The derivaties of the SCGF provide
us with e.g. the average value of the dynamical activity or its susceptibility, while the probability
distribution of the dynamical activity can be obtained by taking its Legendre transform, allowing us
to quantify the rarity of certain values of the activity. Similar results were recently obtained with
very high precision using DMRG [32]. The cell type of the RNN used here is a gated recurrent
unit [69], and we set dh = 128. The RNN is first optimized on an L = 16 chain (Fig. 1b), using
NS = 5000 samples and updating the weights using the Adam optimizer [70] with a learning rate
α = 10−4, which is lowered to α = 10−5 until convergence is acquired. Additionally, we enforce
parity symmetry [52]. The optimized RNN cell obtained in this way is not explicitly dependent on
the lattice size, and can be used as a starting point for training of larger systems belonging to the
same dynamical phase [53]. Hence, we can first extensively train the RNN cell on a small lattice,
which is computationally cheap for actions such as determining the optimal training hyperparameters
and avoiding local minima. These cells are then used as a starting point to obtain the SCGF for large
lattices in an iterative fashion; L = 16→ L = 32→ L = 64→ L = 128 (Fig. 1b). Each of these
steps typically requires only a few hundred training iterations until convergence, so that even large
lattices can be studied in a computationally efficient way. In the inset of Fig. 1b, we compare the
SCGF obtained with the RNN states to those calculated with DMRG. The error per lattice site made
with the RNN ansatz ε ≡ θ(s)DMRG/L − θ(s)RNN/L is typically very small, ε . O(10−6)—with
the largest errors often occurring near the transition point—which demonstrates the capability of
the RNN states in representing the steady-state configurational probability distribution for both
dynamical phases.

5 Discussion

We have demonstrated the use of neural-network states for obtaining large-deviation functions
of dynamical systems. In particular, we have shown that a recurrent neural-network state ansatz
is capable of accurately determining the scaled cumulant-generating function of the Fredrickson-
Andersen model on large one-dimensional lattices. Similar ansätze have previously been shown to
outperform tensor network techniques for two-dimensional quantum systems [51, 52]. Hence, this
ansatz could prove powerful in studying large deviation functions of two-dimensional systems which
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are relatively unexplored; we are currently investigating this. As improvements are still being made
rapidly to this ansatz, we can expect it to play an important role for the study of large deviations of
dynamical systems.

Broader Impact

The authors do not foresee their work having any negative societal consequences or causing ethical
issues.

Acknowledgments and Disclosure of Funding

Computational resources (Stevin Supercomputer Infrastructure) and services used in this work were
provided by the VSC (Flemish Supercomputer Center), and the Flemish Government – department
EWI. T. Vieijra is supported as an ‘FWO-aspirant’ under contract number FWO18/ASP/279. S.W.
was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02–05CH11231. I.T. acknowledges NSERC.

References
[1] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. Van Duijvendijk, and F. Van Wijland.

Dynamical first-order phase transition in kinetically constrained models of glasses. Physical
Review Letters, 98(19):195702, 5 2007.

[2] Juan P Garrahan, Robert L Jack, Vivien Lecomte, Estelle Pitard, Kristina van Duijvendijk,
and Frédéric van Wijland. First-order dynamical phase transition in models of glasses: an
approach based on ensembles of histories. Journal of Physics A: Mathematical and Theoretical,
42(7):075007, 1 2009.

[3] Juan P. Garrahan. Aspects of non-equilibrium in classical and quantum systems: Slow relaxation
and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics.
Physica A: Statistical Mechanics and its Applications, 504:130–154, 8 2018.

[4] Suriyanarayanan Vaikuntanathan, Todd R. Gingrich, and Phillip L. Geissler. Dynamic phase
transitions in simple driven kinetic networks. Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics, 89(6):062108, 6 2014.

[5] Paolo Visco, Andrea Puglisi, Alain Barrat, Emmanuel Trizac, and Frédéric Van Wijland.
Fluctuations of power injection in randomly driven granular gases. Journal of Statistical
Physics, 125(3):529–564, 11 2006.

[6] Guy Bunin, Yariv Kafri, and Daniel Podolsky. Large deviations in boundary-driven systems: Nu-
merical evaluation and effective large-scale behavior. EPL (Europhysics Letters), 99(2):20002,
7 2012.

[7] Jakob Mehl, Thomas Speck, and Udo Seifert. Large deviation function for entropy production
in driven one-dimensional systems. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, 78(1):011123, 7 2008.

[8] B. Derrida, J. L. Lebowitz, and E. R. Speer. Exact Large Deviation Functional of a Stationary
Open Driven Diffusive System: The Asymmetric Exclusion Process. In Journal of Statistical
Physics, volume 110, pages 775–810. Springer, 3 2003.

[9] Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports
on Progress in Physics, 75(12):126001, 11 2012.

[10] Thomas McGrath, Nick S. Jones, Pieter Rein Ten Wolde, and Thomas E. Ouldridge. Biochemical
Machines for the Interconversion of Mutual Information and Work. Physical Review Letters,
118(2):028101, 1 2017.

5



[11] Robert L Jack and Peter Sollich. Large deviations of the dynamical activity in the East model:
analysing structure in biased trajectories. Journal of Physics A: Mathematical and Theoretical,
47(1):015003, 12 2014.

[12] Udo Seifert. Entropy production along a stochastic trajectory and an integral fluctuation theorem.
Physical Review Letters, 95(4):040602, 7 2005.

[13] Christian Maes. Frenetic Bounds on the Entropy Production. Physical Review Letters,
119(16):160601, 10 2017.

[14] Thierry Bodineau and Bernard Derrida. Cumulants and large deviations of the current through
non-equilibrium steady states. Comptes Rendus Physique, 8(5-6):540–555, 6 2007.

[15] Vivien Lecomte, Alberto Imparato, and Frédéric Van Wijland. Current fluctuations in systems
with diffusive dynamics, in and out of equilibrium. In Progress of Theoretical Physics, volume
184, pages 276–289. Oxford Academic, 3 2010.

[16] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England. Dissipation
Bounds All Steady-State Current Fluctuations. Physical Review Letters, 116(12):120601, 3
2016.

[17] Hugo Touchette. The large deviation approach to statistical mechanics. Physics Reports,
478(1-3):1–69, 7 2009.

[18] Hugo Touchette and Rosemary J. Harris. Large deviation approach to nonequilibrium systems.
Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, pages
335–360, 10 2011.

[19] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2 2017.

[20] Cristian Giardinà, Jorge Kurchan, and Luca Peliti. Direct evaluation of large-deviation functions.
Physical Review Letters, 96(12):120603, 3 2006.

[21] Vivien Lecomte and Julien Tailleur. A numerical approach to large deviations in continuous
time. Journal of Statistical Mechanics: Theory and Experiment, 2007(03):P03004, 3 2007.

[22] Takahiro Nemoto, Freddy Bouchet, Robert L. Jack, and Vivien Lecomte. Population-dynamics
method with a multicanonical feedback control. Physical Review E, 93(6):062123, 6 2016.

[23] Ushnish Ray, Garnet Kin Lic Chan, and David T. Limmer. Exact Fluctuations of Nonequilibrium
Steady States from Approximate Auxiliary Dynamics. Physical Review Letters, 120(21):210602,
5 2018.

[24] Daniel Jacobson and Stephen Whitelam. Direct evaluation of dynamical large-deviation rate
functions using a variational ansatz. Physical Review E, 100, 2019.

[25] Ushnish Ray and Garnet Kin-Lic Chan. Constructing auxiliary dynamics for nonequilibrium
stationary states by variance minimization. Journal of Chemical Physics, 152(10):104107, 3
2020.

[26] Stephen Whitelam, Daniel Jacobson, and Isaac Tamblyn. Evolutionary reinforcement learning
of dynamical large deviations. arXiv:1909.00835, 9 2019.

[27] Tom H E Oakes, Adam Moss, and Juan P Garrahan. A deep learning functional estimator of
optimal dynamics for sampling large deviations. Machine Learning: Science and Technology, 5
2020.

[28] Dominic C. Rose, Jamie F. Mair, and Juan P. Garrahan. A reinforcement learning approach to
rare trajectory sampling. arXiv:2005.12890, 5 2020.

[29] Joel L. Lebowitz and Herbert Spohn. A gallavotti-cohen-type symmetry in the large deviation
functional for stochastic dynamics. Journal of Statistical Physics, 95(1-2):333–365, 4 1999.

6



[30] Bernard Derrida and Tridib Sadhu. Large deviations conditioned on large deviations I: Markov
chain and Langevin equation. Journal of Statistical Physics, 176(4):773–805, 8 2019.

[31] Mieke Gorissen, Jef Hooyberghs, and Carlo Vanderzande. Density-matrix renormalization-
group study of current and activity fluctuations near nonequilibrium phase transitions. Physical
Review E, 79(2):020101, 2 2009.

[32] Mari Carmen Bañuls and Juan P. Garrahan. Using Matrix Product States to Study the Dynamical
Large Deviations of Kinetically Constrained Models. Physical Review Letters, 123(20):200601,
11 2019.

[33] Phillip Helms, Ushnish Ray, and Garnet Kin Lic Chan. Dynamical phase behavior of the single-
A nd multi-lane asymmetric simple exclusion process via matrix product states. Physical Review
E, 100(2):022101, 8 2019.

[34] Alexandra Nagy and Vincenzo Savona. Variational Quantum Monte Carlo Method with a
Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters, 122(25):250501,
6 2019.

[35] Michael J. Hartmann and Giuseppe Carleo. Neural-Network Approach to Dissipative Quantum
Many-Body Dynamics. Physical Review Letters, 122(25):250502, 6 2019.

[36] Filippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Variational Neural-
Network Ansatz for Steady States in Open Quantum Systems. Physical Review Letters,
122(25):250503, 6 2019.

[37] Nobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural stationary states for open
quantum many-body systems. Physical Review B, 99(21):214306, 6 2019.

[38] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries and
Many-Body Excitations with Neural-Network Quantum States. Physical Review Letters,
121(16):167204, 10 2018.

[39] Kenny Choo, Titus Neupert, and Giuseppe Carleo. Two-dimensional frustrated J1-J2 model
studied with neural network quantum states. Physical Review B, 100(12):125124, 9 2019.

[40] Tom Vieijra, Corneel Casert, Jannes Nys, Wesley De Neve, Jutho Haegeman, Jan Ryckebusch,
and Frank Verstraete. Restricted Boltzmann Machines for Quantum States with Non-Abelian or
Anyonic Symmetries. Physical Review Letters, 124(9):097201, 3 2020.

[41] Roger G. Melko, Giuseppe Carleo, Juan Carrasquilla, and J. Ignacio Cirac. Restricted Boltzmann
machines in quantum physics. Nature Physics, 15(9):887–892, 9 2019.

[42] S. Pilati, E. M. Inack, and P. Pieri. Self-learning projective quantum Monte Carlo simulations
guided by restricted Boltzmann machines. Physical Review E, 100(4):043301, 10 2019.

[43] Francesco Ferrari, Federico Becca, and Juan Carrasquilla. Neural Gutzwiller-projected varia-
tional wave functions. Physical Review B, 100(12):125131, 9 2019.

[44] Dan Sehayek, Anna Golubeva, Michael S. Albergo, Bohdan Kulchytskyy, Giacomo Torlai,
and Roger G. Melko. Learnability scaling of quantum states: Restricted Boltzmann machines.
Physical Review B, 100(19):195125, 11 2019.

[45] Tom Westerhout, Nikita Astrakhantsev, Konstantin S. Tikhonov, Mikhail I. Katsnelson, and
Andrey A. Bagrov. Generalization properties of neural network approximations to frustrated
magnet ground states. Nature Communications, 11(1):1–8, 12 2020.

[46] Attila Szabó and Claudio Castelnovo. Neural network wave functions and the sign problem.
arXiv:2002.04613, 2 2020.

[47] Yusuke Nomura, Andrew S. Darmawan, Youhei Yamaji, and Masatoshi Imada. Restricted
Boltzmann machine learning for solving strongly correlated quantum systems. Physical Review
B, 96(20):205152, 11 2017.

7



[48] Dong Ling Deng, Xiaopeng Li, and S. Das Sarma. Machine learning topological states. Physical
Review B, 96(19):195145, 11 2017.

[49] Dong Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum entanglement in neural network
states. Physical Review X, 7(2):021021, 5 2017.

[50] Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. Constructing exact representations of
quantum many-body systems with deep neural networks. Nature Communications, 9(1):1–11,
12 2018.

[51] Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. Deep autoregres-
sive models for the efficient variational simulation of many-body quantum systems. Physical
Review Letters, 124(2), 2 2019.

[52] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Car-
rasquilla. Recurrent neural network wave functions. Physical Review Research, 2(2):023358, 6
2020.

[53] Christopher Roth. Iterative Retraining of Quantum Spin Models Using Recurrent Neural
Networks. arXiv:2003.06228, 3 2020.

[54] Giacomo Torlai and Roger G. Melko. Latent Space Purification via Neural Density Operators.
Physical Review Letters, 120(24):240503, 6 2018.

[55] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and
Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics, 14(5):447–450,
5 2018.

[56] Giacomo Torlai, Brian Timar, Evert P.L. Van Nieuwenburg, Harry Levine, Ahmed Omran,
Alexander Keesling, Hannes Bernien, Markus Greiner, Vladan Vuletić, Mikhail D. Lukin,
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