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1 Introduction

As we are entering the so called Noisy Intermediate Scale Quantum (NISQ) [9] technology era,
the search for more suitable algorithms under NISQ restrictions is becoming ever important. A
truly compatible NISQ application must first be amenable to architecture constraints and size limits.
Furthermore, to minimize the adverse effects of gate errors and decoherence, it is important that the
circuits we run are as gate-frugal, and as shallow as possible.

Perhaps the most promising classes of such algorithms are based on variational circuit methods,
applied to problems in quantum chemistry. A key problem in this field is the computing of ground
state energies and low energy properties of chemical systems (the chemical structure problem). This
problem is believed to be intractable in general, yet the quantum Variational Quantum Eigensolver
(VQE) [8] algorithm can provide solutions in regimes which beyond the reach of classical algorithms,
while maintaining NISQ-friendly properties.

VQE is a hybrid quantum-classical algorithm, where a parametrized quantum state is prepared on a
quantum computer, the parameters of which are selected using classical optimization methods. The
objective is to prepare the state |ψ(~θ)〉 which can be used to approximate the ground state of a given
Hamiltonian H by the variational principle

Emin ≤ min
~θ

(〈ψ(~θ)|H|ψ(~θ)〉), (1)

where Emin is a ground state energy of H . The parametrized state is prepared by applying U(~θ),
which is a fixed-architecture parametrized quantum circuit, where the angles ~θ = (θ1...θn) specify
the rotation angles of the local unitary rotations the circuit is built from. This circuit, known as the
Ansatz is applied to the fiducial “all zero” state to prepare the state |ψ(~θ)〉 = U(~θ)|0〉.
It is well established that the structure of the Ansatz can dramatically influence the VQE’s perfor-
mance [4, 6], as the closeness of the estimated ground state to the true one depends on the state
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Figure 1: In the proposed method we train an agent to generate quantum circuits with basic quantum
gates (rotations and CNOTs) on increasingly harder tasks defined by different thresholds. Once an
agent solves the problem for a particular threshold (depicted in a purple box), the threshold is lowered
and the agent starts solving harder task with knowledge obtained during the previous one.

manifold accessible by the Ansatz. Thus finding new ways to optimize the architecture could lead to
breakthroughs in quantum variational methods for chemistry (e.g. for strongly-correlated systems, for
which standard Ansätze might fail), but also in other domains which utilize variational circuits such as
machine learning and optimization [2, 13]. Currently, the the foremost Ansätze fall primarily in two
classes: chemistry-inspired (e.g. the unitary coupled-cluster Ansatz [8, 12]) and hardware inspired
(e.g. the hardware efficient Ansatz in [5]). Architectures from both of these classes entail using a
fixed architecture [8, 12, 5, 1] determining the unitary U(~θ), and hence the corresponding Ansatz
circuit which can be decomposed into two-qubit CNOT and one-qubit rotation gates parametrized by
(θ1, θ2, . . . , θn) ∈ [0, 2π]n to be optimized by a classical subroutine. However, the architecture itself
can also be optimized. This results in a hard structure optimization problem, as it is a combinatorial
optimization problem which must balance between the expressivity of the Ansatz (guaranteeing a
good approximation of the ground state energy), and an enlarged search space stemming from the
depth and size of the circuit (which is incompatible with NISQ restrictions).

In this work we propose a general optimization procedure based on reinforcement learning (RL)
which, despite the issues above, not only finds the correct parameters but, by the very nature of the
RL approach, also results in an architecture which is both gate and depth efficient. To minimize the
computational burden of training, the algorithm is trained with an approximation of minimal energy
for a given circuit obtained by local, rather than global, optimization at each step. Furthermore, we
propose a scheme for generating quantum circuits using so-called curriculum learning, the details of
which are discussed in Sec. 2.

We find that utilizing the RL paradigm offers shorter, more NISQ-friendly circuits than fixed-
architecture Ansätze such as UCCSD, providing good ground state energy estimates, with curriculum
learning having a further edge over the basic RL approach. Thus our work suggests that RL may
provide novel avenues for finding structure-optimized, NISQ-friendly Ansätze for quantum chemistry.

2 Methods

In this work, we express the quantum circuit design for ground state energy estimation problems as a
reinforcement learning task environment. In reinforcement learning (RL), [10] a so-called learning
agent (or algorithm) learns by interacting with an environment. Interactions alternate between taking
actions a ∈ A and receiving feedback in form of states s ∈ S and rewards r ∈ R. In the quantum
circuit design environment, the actions are all the possible placings of a single-qubit gate (X-, Y-, or
Z-rotations) and a two-qubit CNOT gate added as the next layer on the qubit wires. The state is a
representation of the current circuit.
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One time step corresponds to a single interaction cycle between the agent choosing gates and the
environment issuing a reward, which depends on the estimate of the ground state energy obtained from
the resulting circuit. This estimate of the ground energy is obtained after independently optimizing the
angle of the last applied gate by the coordinate gradient descent algorithm Rotosolve [7]. An episode
starts with an empty circuit and ends either when the goal condition is met or the maximum number of
time steps is reached. Note, since global optimization is not performed to save resources, this means
the agent is learning from imperfect data. To define a goal condition we set a hypothesized energy
threshold, as soon as the agent reaches this threshold it receives a reward of +5. If the agent fails to
reach the threshold within the required number of time steps, a reward of -5 is issued. Otherwise,
a reward proportional to the difference between the previous and the current energy is given. The
goal of the agent is to maximize its expected discounted sum of future rewards E(

∑∞
k=0 γ

krt+k+1)
with respect to the chosen discount factor γ. The agent’s actions are governed by the conditional
probability distribution π(a|o), its policy. We employ a Double Deep-Q network (DDQN) [11]
with an ε-greedy policy. The energy threshold chosen is 0.001 Hartee, approximately the “chemical
accuracy", which stems from typical errors encountered in thermochemical experiments (and hence
ideally one would improve on this accuracy).

To obtain energies closer to chemical precision, we require larger quantum circuits. Larger quantum
circuits are equivalent to a larger explorable state space which increases the difficulty of the learning
problem. While this presents a formidable challenge, it also provides us with well-defined levels of
difficulty that can be leveraged for curriculum learning [3], a variant of transfer learning. We employ
a curriculum learning approach, where a DDQN is trained in the same environment in multiple rounds
with varying complexity, as depicted in Figure 1. Each round consists of thousands of episodes and
for each new round the energy threshold is lowered, which also increases the difficulty of the task.

3 Results

To benchmark the proposed method we carried out a series of experiments. All of the experiments
consisted of 120 000 episodes, a cycle starting from an empty circuit, terminating when a limit of
gates (40) is used or if the target energy is reached. All experiments are performed on the problem of
finding the ground state of LiH with bond distance 1. In RL the discount factor is set to γ = 0.93,
probability of random action in ε-greedy policy is decayed by a factor 0.99995 up to minimal value
ε = 5%. The target network in the DQN training procedure is updated after each 500 actions. After
each training episode, we included a testing phase where probability of random actions is set to ε = 0
and experience replay procedure is turn off. Values from this test episodes are presented below.

To improve our method we propose curriculum agent (CA) training in which the agent learns in an
increasingly more challenging environment. More specifically, the first threshold was set to a distance
of 0.005 Hartree from the ground energy. When the behaviour of an agent becomes stable in terms
of successfully solved episodes, which in our case was in less than 60 000 episodes we lower the
threshold to 0.003 Hartree. In this new threshold setting, we initialize the agent’s neural network with
weights obtained from training on previous threshold. Additionally experiences from previous task
are kept in replay buffer, with epsilon greedy parameter set to ε = 5% which is a minimal value down
to which we decay probability of random action. To ensure a fair comparison of all methods we run
training procedure on both thresholds for 60 000 episodes.

To compare we set up two baseline methods: a random agent (RA) which is a sanity check for
the reasonability of reinforcement learning methods and tabula-rasa agent (TR) to validate the
reasonability of curriculum agent. In the RA setting, circuits are generated by randomly selecting
gates for each layer terminating when a limit of gates (40) is used or if the target energy is reached.
Tabula-rasa agent is trained from scratch on the threshold 0.003 Hartree. We compare abovementioned
methods on circuits that exceeds chemical precision after one Rotosolve update with respect to
minimum and average depth, number of gates and number of CX gates.

In Table 1 one can see that curriculum agent (CA) achieves best results in all three statistics. Note
that CA generates at least twice as many unique circuits as other methods. What is more important,
proposed circuits are significantly shorter in terms of all examined criteria.

In the next experiment we examine how well the proposed architectures perform under global
optimization. We compare our method with previously introduced baselines and with standard VQE
approaches i.e. hardware efficient [5] and UCCSD Ansätze [8, 12]. On each circuit examined in
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Table 1: Results from unique sequences of actions which allowed to pass the threshold of 0.003. One
full Rotosolve cycle was run, resulting in some circuits exceeding chemical precision. In the table
below, we report the number of circuits which exceeded 0.001, average number of gates, minimal
number of gates, average depth, minimal depth, average number of CX gates and minimal number
of CX gates in circuits which exceeded chemical precision. First three columns of TR and ME
experiments were run over 10 seeds, and the average over solved trials is reported. In the CA and
TR experiment, the agent achieved threshold 0.003 in 7 out of 10 trials, i.e. independent runs. Bold
results are the best.

#(0.1%) avg #gates min #gates avg depth min depth avg #CX min #CX
RA 5 29.4 26 17.4 13 13.8 12
TR 10.5 30.3 23 21.38 13 22.72 13
CA 24.28 20.21 13 11.21 8 10.41 6

Table 2: Comparison of different architectures with respect to distance obtained after global opti-
mization procedure. Third column presents number average number of unique circuits that achieved
chemical precision after global optimization. Bold results are the best.

avg distance min (dist) #(0.1%) avg #gates min #gates min depth
RA 0.00041 0.00009 5 29.4 26 13
HE 0.00239 0.00230 N.A. 33 33 12
UCCSD 0.00038 0.00038 N.A. 430 430 430
TR 0.00049 0.00013 129.71 30.68 23 13
CA 0.00043 0.00007 846.29 16.21 13 6

previous experiments, we run the Constrained Optimization By Linear Approximation (COBYLA)
optimizer with maximal number of iterations set to 1000. UCCSD consists of 430 gates, while
hardware efficient (HE) consists of 33 gates i.e. three layers.

As one can see in Table 2 curriculum agents also provide competitive architectures in terms of getting
as close to the ground state energy as possible. Note that only RA and UCCSD achieves lower
average energies after global optimization than CA, however both of them require significantly more
gates.

In the last experiment we investigate how winning action sequences from task with threshold 0.005
(left Fig. 2) correspond to winning action sequences from tasks with threshold 0.003 (right Fig. 2).
Fig. 2 shows why curriculum learning is a powerful technique in this problem. The agent do reuse
previously learned knowledge on 0.005 threshold and starts circuits with the same combination of
rotation and CNOT gates. As one can see at the left Fig. 2 agent successfully learns to use Ry gate
on third qubit at the beginning of the circuit, instead of CNOTs which would have no effect on the
energy of a particular circuit. Then agent combine this rotation gates with CNOT gates for suitable
qubits, which is beneficial in terms of energy. Intrestingly, during the training with threshold 0.005
the 3rd gate was redundant due to the nature of Rotosolve algorithm and during the second task
(0.003 threshold) agent unlearnt this behaviour (third slot on the circuits). In the second task most
action are taken repeatedly, which can suggest that agent shifted from exploration toward exploitation
quickly thanks to the knowledge obtained on previous tasks.

71% 36% 54% 45% 42% 35%23% 20% 61%30% 100% 84% 50% 40% 99%48% 35% 98%?

Figure 2: Comparison of the dominating gates in the initial seven actions for different thresholds.
Circuits on the left and right side correspond to tasks with threshold 0.005 and 0.003 respectively.
The frequency of its use is written above each gate. Question mark denotes that all gates are used
almost uniformly. The gates that do not change when the threshold is changed are marked in red.
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4 Conclusion

In this work we presented a novel approach for training the reinforcement learning agents to generate
quantum circuits. The curriculum agents are trained on increasingly harder tasks to generate circuits
that approximate ground state energies with lower error. The resulting circuits are short in terms of
quantum gates and hence noise robust resulting in the shortest circuits obtaining chemical precision
for this task. Importantly, the proposed method has a unique feature that allows to approach arbitrary
energy level with an increasingly higher precision. This feature allows us to bypass the need for good
estimates of ground state energy which we show improve performance. Additionally, the objective
function of an agent can be further modified to explicitly promote shorter circuits e.g. number of
CNOT gates can be used to penalize an agent. Last but not least, curriculum learning can be naturally
extended beyond a single problem defined by a particular molecule configuration and knowledge
obtained during training can be transferred to an agent solving different task.

Broader Impact

Quantum computers may offer significant improvements in chemistry of the future, with applications
in drug and materials design which could have widespread positive consequences in society (e.g. in
more effective and cheaper medicine).

Our work presents novel approaches for enhancing VQE-based methods targeting quantum chemistry
problems, and thus contributes to this objective. In particular, this research focuses on the use of
reinforcement learning to automatically program existing quantum devices. Whilst our work mainly
focuses on finding the LiH molecule ground state energy, the benefits of such a solution extends to
research questions that can be reformulated as a VQE optimization problem.

We foresee no negative impact stemming from our research, no significant consequences from system
failures, nor to we believe our methods leverage any bias in any data.
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