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Abstract

Recently, learning equations of motion to describe dynamics from data using neural
networks has been attracting attention. During such training, numerical integration
is used to compare the data with the solution of the neural network model; however,
discretization errors due to numerical integration prevent the model from being
trained correctly. In this study, we propose a theoretical framework for investigating
the effect of numerical integration on modeling errors and perform the error analysis
of the Runge-Kutta methods.

1 Introduction

Data-driven approximation of differential equation by neural networks has a long his-
tory [Anastassi, 2014, Cichock and Rolf Unbehauen, 1992, Lagaris et al., 1998, Raissi, 2018,
Ramuhalli et al., 2005, Rudd et al., 2014], but it has been attracting limited attention until recently.
Deep neural networks have made significant achievements mostly in real-world tasks such as image
processing [He et al., 2016] and natural language processing [Devlin et al., 2018]. Recent investiga-
tion has revealed that many cutting-edge architectures can be regarded as numerical discretization
of differential equations [Lu et al., 2017], leading to a bunch of studies on neural networks for dif-
ferential equations. [Chen et al., 2018] proposed an automatic differentiation algorithm for a neural
network approximating an ordinary differential equation (ODE) and surpassed the memory usage
greatly. [Greydanus et al., 2019] approximated an energy function H instead of a time-derivative of a
state, and thereby, built a Hamiltonian system, which admits the energy conservation law. Researches
on the application of such modeling capability of deep learning to the estimation of the governing
equations of physical phenomena have been intensively conducted.

Modeling error in neural ODE models The objective of most of these studies is modeling
continuous-time differential equations ẋ = f(x) that describes the target physical phenomena
by using the neural ODE model (NODE)

ẋ = fNN(x), (1)

or its extensions [Chen et al., 2018, Chen et al., 2020, Greydanus et al., 2019, Zhong et al., 2020b].
Due to the difficulty of the observation of the values of ẋ, it would be expected that x(t) at an
enough number of t’s are observed and hence given as the data. In such a case, numerical integrators
(typically, an explicit Runge–Kutta method) are required to integrate the neural network models for
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learning and also for predicting the dynamics. However, the employment of the numerical integrators
necessarily induce numerical errors, which results in producing non-negligible modeling errors.
These modeling errors are not a problem if the discrete models can be used as they are; however, this
can be serious when the models must be identified as continuous differential equations rather than
discrete models, which is a common situation, for example, where the target system is actually an
subsystem of a large scale coupled systems. In such a case, the subsystems should be identified as
continuous ones because each subsystem may have different timescales and it may not be possible to
define a unique time step for the entire system.
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(a) The results for the various vibration
modes at different speeds (ẋ = λx with
λ = i, 5i and 7.5i).
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(b) The results of NODE discretized
by the explicit Euler method and the
explicit midpoint rule for ẋ = ix.

Figure 1: The orbits of the true dynam-
ics, the discrete NODE and the NODE
used as continuous models.

New subject of numerical analysis that emerges from
deep neural network modeling of ODEs Fig. 1 shows
motivating examples, in which we learned the test equation

ẋ = λx, x : t ∈ R 7→ x(t) ∈ C (2)
with several values of λ’s. This is, in fact, a representative
equation for dynamics in the sense that most nonlinear
differential equations describing physical phenomena are
reduced to this equation by linearization and diagonaliza-
tion. λ ∈ C characterises the dynamics in the sense that
Re λ determines the speed of decay (or blowup) and Im λ
does the speed of oscillation. fNN : C → C in the model
(1) was given by a standard multilayer perceptron. See
Appendix B for details. The important point here is that
the modeling errors caused by the numerical integrators
depend on the characteristics (the value of λ) of the dy-
namics in a non-trivial way. In fact the dynamics with the
slowest speed (λ = i) is easier to model than that with a
moderate speed(λ = 5i); however, the dynamics with the
hishest speed (λ = 7.5i) is again easier than the moder-
ate one. Thus there arises a new challenge of numerical
analysis: the learnability analysis, which will be the 4th
subject of numerical analysis after the compatibility, the
stability and the convergence analysis. The aim of this
paper is providing a framework of such an analysis.

The main contributions of this paper would be: (1) in-
troduction of a framework of theoretical analysis of the
modeling errors caused by the numerical integrators, (2)
thereby providing the theoretical background for newly
developing integrators that are suitable not only for com-
putation but also for modeling.

The related work includes: as a bridge between
deep learning and numerical analysis, Celledoni et
al.[Celledoni et al., 2020] investigated the relation between the structure-preserving numerical inte-
grators and deep neural network models. Modeling error analysis of dynamic neural network models
as a nonlinear identification problem is performed by Poznyak et al.[Poznyak et al., 1996].

2 Proposed framework of learnability analysis

The proposed framework parallels to the classical analysis of the stability region. In fact, the problem
to be addressed here is to a certain extent similar to the stability analysis of numerical integrators.
As is well-known, stability of each numerical integrator depends on the characteristics of the target
differential equations, that is, how rapidly the solution decays and/or how rapidly the solution
oscillates. In the stability analysis, the stability region is defined by specifying λ ∈ C for which the
numerical solution to (2) by the integrator remains bounded. The analysis of this region helps users
to narrow down their candidates of the integrators for the target differential equations according to
the characteristics of the equations.

Following this approach, we propose a framework for analyzing the learnability of numerical
integrators. More precisely, we will introduce the learnability coefficient, which characterizes
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the dynamics of which the given numerical integrator is suitable for modeling, thereby playing a
similar role to the stability region of the standard stability analysis.

First of all, we confirm the learning method assumed in this paper. We suppose that the target
differential equation is learned by the model ˙̂x = f̂(x̂; θ), where f̂ is a function that is represented by,
e.g., a multilayer perceptron and θ denotes the model parameters. As a model, we mainly consider
neural network models, but we only assume the universal approximation property for models. For the
data, we suppose that only the states x are observable, and therefore the derivatives ẋ are not available.
In order to focus on the modeling errors caused by numerical integrators, we consider the ideal
situation, where a sufficient amount of the noise-free data are given and they are sampled at a fixed
sampling rate 1/h, thereby supposing that the data are given as a set of pairs D := {(x(n)

d , x
(n+1)
d )},

where x
(n)
d denotes the data sampled at t = nh. For training, f̂(x̂; θ) is assumed to be learned by

minimizing
∑

(x
(n)
d ,x

(n+1)
d )∈D ‖x(n+1)

d − x̂(n+1)‖ for a specified norm ‖ · ‖, where x̂(n+1) is given

as the numerical solution by the concerned integrator: x̂(n+1) = x
(n)
d + hf̂numer(x

(n)
d , x̂(n+1); θ),

where hf̂numer(x
(n)
d , x̂(n+1)) is the increment numerically computed by the integrator. Following

the stability analysis, we focus on the case where the target equation is the test equation (2). In this
case, the data set becomes D = {(x(n)

d , x
(n+1)
d = eλhx

(n)
d )} and the loss function is

l(θ;D) :=
∑
x
(n)
d

‖eλhx(n)
d − x̂(n+1)‖. (3)

As we assumed the universal approximation property of the model, by appropriately choosing the
parameters θ, f̂ can represent arbitrary functions. Hence in particular f̂ can be a linear function
f̂(x̂; θ) = αx̂ with α ∈ C, which is in the same class of functions as the target equation ẋ = λx,
that makes the loss function vanished if such an optimal linear function exists. By using such α, we
define the learnability coefficient in the following way.
Definition 2.1. For each α that eliminates (3), we define the learnability coefficient `α by `α :=
|(α− λ)/λ|.

3 The learnability analysis of the Runge–Kutta methods

In this section, we show the learnability coefficient for the general Runge–Kutta methods:

x̂(n+1) = x̂(n) + h

p∑
i=1

biki, ki = f(x̂(n) + h

p∑
j=1

aijkj), (4)

where p, aij’s and bj’s are the constants that defines the method (see, e.g., [Butcher, 2016]).
Theorem 3.1. If the equation (2) is discretized by a Runge–Kutta method (4), there exists an α such
that the model with f̂(x̂) = αx̂ makes the loss function (3) vanished. Moreover, α is a solution to

b>(I − αhA)−1
1αh− eλh + 1 = 0, det(I − αhA) 6= 0, (5)

where 1 = (1 1 · · · 1)>.
Definition 3.1. We call the equation (5) the learnability equation for the Runge–Kutta method.
Remark 3.1. In general, the equation (5) admits p solutions and hence p learnability coefficients
exist for a Runge–Kutta method with p stages. In particular, the model is not uniquely determined
when trained as assumed in this paper; see the examples below.
Theorem 3.2. For the Runge–Kutta methods, the learnability coefficient is a function of z := hλ.
Remark 3.2. By expressing the coefficients as a function of hλ, it is possible to predict the modeling
errors when h becomes smaller.
Example 3.1. The learnability equation of the explicit Euler method is

hα− eλh + 1 = 0, (6)

which gives a unique α: α = eλh − 1/h. In addition, the learnability coefficient, which is a relative
modeling error, is `α :=

∣∣α−λ
λ

∣∣ = ∣∣ ez−1
z − 1

∣∣ with z = hλ.
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Example 3.2. For the learnability equation of the explicit midpoint method

x̂(n+1) = x̂(n) + hk, k = α(x̂(n) +
h

2
αx̂(n))

admits the two solutions α = (−1 ±
√
2eλh − 1)/h. Among these two solutions, α+ = (−1 +√

2eλh − 1)/h is a 2nd-order approximation to λ. In fact, the Taylor series expansion yields
α+ = (−1 +

√
2eλh − 1)/h = λ+ λ3h2/6 + O(h3). Meanwhile, α− = (−1−

√
2eλh − 1)/h is

not an approximation since α− = (−1−
√

(λh+ 1)2)/h = −2/h − λ − λ3h2/6 + O(h3). This
means that the model with the explicit midpoint method is not uniquely identifiable and, moreover,
the learned model may be completely different from the true dynamics.

(a) Explicit Euler
method.

(b) Explicit midpoint
method (α+).

(c) Explicit midpoint
method (α−).

Figure 2: The contour lines of the learnability coefficients.

The contour lines of the learn-
ability coefficients for the above
methods are shown in Fig. 2. As
is expected, the errors are smaller
for the explicit midpoint method
than for the Euler method when
the model corresponding to α+

is learned. Meanwhile, it can
be seen from the figure that the
midpoint method is not effective
for dynamics with strong damp-
ing since the error increases as
λ goes in the negative direction
on the real axis. Next, we compare the modeling errors of the models actually trained using the
multilayer perceptrons with the theoretical values. Because for the neural network models, the model
function f̂ may not be linear, we regard the average value of x̂(n+1)/x

(n)
d as an estimation of α.

Actually, for each model these values were almost constant. Figs. 3 and 4 show the results for
the Euler method and the explicit midpoint method, respectively. The actual measured modeling
errors are very close to theoretical values, in particular, to the desirable α+ for the midpoint method.
Although it is theoretically unclear why α+ was learned, this implies the reliability of our theory.

4 Concluding remarks

(a) The learnability coeffi-
cients.
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(b) Relative modeling errors of
actually trained NODE models.

Figure 3: Comparison of the theoretical results for the Euler
method with the relative errors of actually trained models.

In recent years, methods for con-
structing differential equation models
from data by using deep neural net-
works have been widely studied. In
such methods, the models are often
discretized by numerical integrators
when learning, but the effects of the
discretization have not been well stud-
ied theoretically. Because reducing
the step size that is determined by the
sample rate of the data is not easy, to
reduce the modeling errors, the inte-
grators must be replaced or redesigned. To appropriately select and/or design numerical methods,
an evaluation criteria for the errors is required. In this paper, we have introduced the learnability
coefficient as such a criterion along with the detailed analysis of Runge–Kutta methods.

Broader Impact

The most significant contribution of this paper would be to demonstrate the need for a new theory of
numerical analysis, that is, the learnability, which is the fourth property after the three main topics of
mathematical research on numerical analysis: the consistency, the stability and the convergence. In
this sense, this paper bridges the gap between deep learning and numerical analysis and, furthermore,
broadens the study of mathematical research on numerical integrators.
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(a) Learnability coefficient (α+) (b) Learnability coefficient (α−)
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(c) Relative errors of actually
trained NODE models.

Figure 4: Comparison of the theoretical results for the explicit midpoint method with the relative
modeling errors of actually trained models.
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Appendices

A Proofs

Proof of Theorem 3.1. Suppose that the loss function (3) vanishes for the model with

f̂(x̂) = αx̂.

If this equation is discretized by the Runge–Kutta method with the initial condition x̂(nh) = x
(n)
d , it

holds

x̂(n+1) = x
(n)
d + h

p∑
i=1

biki, ki = α(x
(n)
d + h

p∑
j=1

aijkj)), (7)

which is rewritten as

x̂(n+1) = x
(n)
d + hb>k, k = α(x

(n)
d 1+ hAk).

Assuming that det(I − αhA) 6= 0, we get

x̂(n+1) = x
(n)
d + αx

(n)
d hb>(I − αhA)−1

1.

Because x
(n+1)
d = eλix

(n)
d , in order for ‖x̂(n+1) − x

(n+1)
d ‖ to be zero for all x(n)

d , it must hold

eλix
(n)
d = x

(n)
d + αx

(n)
d hb>(I − αhA)−1

1.

for all x(n)
d . Hence, α should satisfy

eλi − 1 = αhb>(I − αhA)−1
1.

Proof of Theorem 3.2. From the learnability equation, we have

b>(I − α

λ
λhA)−1

1
α

λ
λh− eλh + 1 = 0, det(I − α

λ
λhA) 6= 0.

Therefore, we get

b>(I − α

λ
zA)−1

1
α

λ
z − eλh + 1 = 0, det(I − α

λ
zA) 6= 0,

which shows that α/λ and hence α/λ− 1 are functions of z.

B The details of the motivating examples

We explain the details of the numerical examples (Figs 1a and 1b) that motivated this study. The
multilayer perceptron used in these tests has two fully-connection layers. The input and output layers
have 2 units that correspond to the real part and the imaginary part of the input and the output. The
number of hidden units was 200. We used tanh as the activation function.

We trained these neural networks in the following way. For convenience of illustration, we set the
time step to the unit value: ∆t = 1. For each λ, first we prepared the training data as tuples

{(x1, x0) | x1 = exp(λ∆t)x0}
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where we uniformly randomly sampled 10000 points for x0’s from −10 ≤ Re x0 ≤ 10,−10 ≤
Im x0 ≤ 10. Second, (1) was numerically integrated by using the explicit Euler method and the
explicit midpoint rule to generate the data set

{(x0, x̂1) | x̂1 is the numerical one-step solution from x0 bythe integrator}.

After that, the neural networks were trained by minimizing the the mean squared error

1

M

∑
x0

‖x1 − x̂1‖22,

where M is the number of the data.

To investigate the dependence of the modeling errors on the characteristics of dynamics, we changed
the values of λ to i, 5i and 7.5i. As explained in Introduction, λ ∈ C characterises the differential
equation in the sense that Re λ and Im λ correspond to the speed of decay (or blowup) and the speed
of oscillation, respectively. Figure 1a shows the orbits of the discrete and the continuous models. The
colored points represent the validation data and the results of the discrete model. The dashed lines
are the true solutions of the learned model computed by the Runge–Kutta method with a tiny time
step. Remarkably the non-trivial dependence of the modeling errors on the value of λ is observed. In
fact the modeling errors for λ = i, 7.5i are apparently much smaller than that for λ = 5i.

Secondly, we compared the dependence of the errors on the integrators by learning the dynamics
with the explicit Euler method and the explicit midpoint method. Then, we set λ = i and the other
conditions are same as before. The results are shown in Figure 1b. As expected, the modeling error
of the explicit midpoint method is much smaller than that of the Euler method.

From the above observations we numerically confirm that the modeling errors depends both on the
characteristics of the dynamics (i.e., the value of λ) and the numerical integrators. These results
motivate development of a framework of analysis of the modeling errors of numerical integrators
with respect to the type of dynamics.
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