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Motivation: Modeling unknown dynamics

Target dynamics :

𝑓(𝑥) : unknown

{𝑥 𝑡1 , 𝑥 𝑡2 , … , 𝑥 𝑡𝑛 } : given data

Problem : 
Construct continuous model 𝑓𝑁𝑁(𝑥; 𝜃) which approximates 𝑓(𝑥)

Point :

absence of ሶ𝑥 𝑡1 , ሶ𝑥 𝑡2 , … , ሶ𝑥 𝑡𝑛

→ need for discretization of 𝑓𝑁𝑁(𝑥; 𝜃) in learning process

→ causes modeling error 𝑓𝑁𝑁 ≠ 𝑓

- Defined the modeling error as the “learnability coefficient”

- Formulated the way of learnability analysis

- Proposed the new viewpoint of designing numerical methods

other than the consistency, stability, and convergence

Contribution:

Setup 1: The model equation

model equation*：
d𝑥

d𝑡
= 𝜆𝑥 (𝜆 ∈ ℂ)

Target dynamics 𝑓 is too general 

-> Introduce the linear “model equation” as a benchmark problem

*commonly used in stability analysis of numerical methods

Re 𝜆

Im 𝜆 “A is better than B for learning damping dynamics”
“B is better than A for learning vibrating dynamics”learnable dynamics 

of method A

The idea of “learnability analysis”

of method B calc the learnability 
for each discretization method and 
for each 𝝀

to say like these, what’s 
“learnability”?

Setup 2: Definition of the learnability coefficient

suppose that the learned model 𝑓𝑁𝑁 is linear : 𝑓𝑁𝑁 𝑥 = 𝛼𝑥 (𝛼 ∈ ℂ)

Define the relative error as  “learnability coefficient”
𝛼 − 𝜆

𝜆

Main result : equation of learned model 

If we learned the model eq.
d𝑥

d𝑡
= 𝜆𝑥 with the Runge-Kutta methods, 

There exists a linear model 𝑓NN 𝑥 = 𝛼𝑥 that the numerical solution of 𝑓NN

matches the sampled exact solution 𝑥(𝑛ℎ) = 𝑥0e
𝑛𝜆ℎ.    The 𝛼 satisfies：

where 𝒃 and 𝐴 are constant vector and matrix that specify 𝑝-stage Runge-Kutta methods.

𝒃T 𝐼 − 𝛼ℎ𝐴 −1𝟏𝛼ℎ − e𝜆ℎ + 1 = 0,


𝛼−𝜆

𝜆
is a function of 𝑧 = 𝜆ℎ

ℎ is usually fixed, so the modeling error can be controlled by the choice of 

discretization method

𝛼 − 𝜆

𝜆

Learnability regions for some Runge-Kutta methods
e.g.   If 10% error is allowed, dynamics 𝑧 = 𝜆ℎ inside the line “0.100” is learnable.

Given：sampled data {𝑥(0), 𝑥(ℎ),… , 𝑥(𝑁ℎ)}

Loss :  𝐿 𝑥 𝑛ℎ , {𝑥 𝑛 }

Exact solution 𝑥 𝑡

Unknown：target dynamics 
d𝑥

d𝑡
= 𝑓(𝑥)

Numerical solution : {𝑥 0 , 𝑥 1 , … , 𝑥(𝑁)}

Discretization : 
𝑥(𝑛+1)−𝑥(𝑛)

ℎ
= 𝑓d 𝑥 𝑛 ; ℎ, 𝑓NN(𝑥; 𝜃)

NN model : 
d𝑥

d𝑡
= 𝑓NN(𝑥; 𝜃)

Observed data

Update 𝜃 by min 𝐿

How to use the result: 

learnable region {𝜆 : learnability(𝜆) < threshold } 

Visualization of learnability

Experiment

Theorem

error  𝑓𝑁𝑁 ≠ 𝑓

Many systems of physics 
are written in this form

1. Roughly estimate the damping/oscillation behavior of the target 

dynamics (e.g. by spectrogram)

2. Select a discretization method that has good “learnability” for 

the behavior

3. Or, design a new method that is good in terms of “learnability”

Learnability analysis enables us to do step 2 and 3 

d𝑥

d𝑡
= 𝑓(𝑥)

Related works: NODE[Tian et al. (2018)], HNN[Greydanus et al. (2019)], etc…

Learned model and prediction for 𝜆 = 1.5𝑖

The result of learning 𝜆 = 1.5𝑖

with the classical 4th order Runge-Kutta (ℎ = 1.0).

① ②

③
④

⑤

Summary Theory Example

Re 𝜆 :  damping, Im 𝜆 :  oscillation

→ 𝛼 and the learnability can be calculated

𝜆𝑥 represents linearized and diagonalized 𝑓

To know the error that remains even if the learning is successful,

Learning is successful: ③=④

”○”, the numerical solution of 𝑓𝑁𝑁 with the method, is on the 

exact solution “―”

But the learned dynamics differs from the target: ①≠②

― : the accurately integrated solution of 𝑓𝑁𝑁

― : the target dynamics

The difference is predicted: ②=⑤

― : the learned dynamics 𝑓𝑁𝑁

― : the theoretical prediction

④
②

①③
⑤


