Bayesian optimization (BO) is a framework to maximize expensive black-box functions using the following elements:

- **Candidate input** \(x \)
- **Expensive Blackbox Functions**
- **Objectives** \(f_1(x), f_2(x) \)
- **Constraints** \(c_1(x), c_2(x) \)

- **Statistical models** as a prior for the functions: Gaussian processes (GPs) can provide prediction \(\mu(x) \) and uncertainty via variance \(\sigma(x) \)
- **Acquisition function** to score the utility of evaluating input \(x \)
- **Optimization procedure** to select the best input \(x \) for evaluation

Prior Work and Our Contributions

- **Drawbacks of existing methods**
 - Does not handle constraints
 - Genetic algorithms assume that the functions are cheap to evaluate and require a very large number of evaluations
 - Scalarization: relies on random scalars that can be sub-optimal
 - Hypervolume improvement: not scalable for high-dimensional input spaces and large number of objective functions
- **Uncertainty and information theory**
 - They either maximize information gain about the optimal Pareto set \(X^* \) and rely on approximating a very expensive and high-dimensional distribution or minimize the uncertainty over a finite set of points.

Our Approach:

- **MESMOC framework** selects the candidate input \(x \) for evaluation that maximizes the information gain about the optimal Pareto front \(Y^* \)
- Equivalent to expected reduction in entropy over the Pareto front \(Y^* \)
- Relies on a computationally cheap and low-dimensional \(m, k \ll m \) distribution, where \(k \) is the number of objectives

Key advantages of MESMOC

- Robust to the number of samples for AF computation
- Scalable for high-dimensions via output space entropy search
- Tight approximation with closed-form expression
- Two real-world applications to show the effectiveness of our algorithm

MESMOC Algorithm

1. **Posterior estimation**
 - Sample a set of optimal pareto fronts \(Y^* \) using functions and constraints sampled from models
 - Define the acquisition function \(\alpha_t(x) = I(\{x, y\}; Y^* | D_t) \)
 - Evaluate the functions \(f_1, f_2, c_1, c_2 \) at \(x_t = \arg \max \alpha_t(x) \)
 - **St.** \(\mu_{c_1}, \mu_{c_2} \)

2. **Input space entropy-based acquisition function**
 - \(\alpha(x) = I(\{x, y\}, \mathcal{X}^* | D) \)
 - Requires approximation

3. **Output space entropy-based acquisition function**
 - \(\alpha(x) = H(\{x, y\}, \mathcal{X}^* | D) \)
 - Sum of truncated Gaussians

How to sample \(Y^* \)?

- Sample functions from posterior GPs based on random Fourier features sampling procedure. Approximate each GP prior as \(f_i = \phi(x)^T \theta_i \) and \(\tilde{c}_i = \phi(x)^T \theta_c \) where \(\theta \sim N(0, I) \)
- Solve a cheap constrained multi-objective optimization problem over the sampled functions and constraints \(f_1, f_2, \tilde{c}_1, \tilde{c}_2 \) to compute sample Pareto fronts
- For each function and constraint, select the maximum-value in the cheap Pareto front as an upper bound for the truncated Gaussian

MESMOC’s Acquisition Function

\[
\alpha(x) = \frac{1}{s} \sum_{t=1}^{s} \frac{1}{20} \left[\gamma_{t}^{(s)}(x) \Phi^{(s)}(x) - \ln \Phi^{(s)}(x) \right] + \frac{1}{s} \sum_{t=1}^{s} \frac{1}{2} \left[\gamma_{t}^{(s)}(x) \Phi^{(s)}(x) - \ln \Phi^{(s)}(x) \right]
\]