Max-value Entropy Search for Multi-ObjectiveBayesian Optimization with Constraints

Constrained Multi-Objective Bayesian Optimization

MESMOC Algorithm

 Bayesian optimization (BO) is a framework to maximize expensive
black-box functions using the following elements:

objectives

Expensive Blackbox Functions
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Materials Design Hyper Parameter Tuning
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candidate

input x ¢1(x) ... ¢, (x)

constraints

» Statistical models as a prior for the functions: Gaussian processes
(GPs) can provide prediction u(x) and uncertainty via variance o (x)

» Acquisition function to score the utility of evaluating input x

» Optimization procedure to select the best input x for evaluation

Prior Work and Our Contributions

JdDrawbacks of existing methods

» Does not handle constraints

» Genetic algorithms assume that the functions are cheap to evaluate and
require a very large number of evaluations

» Scalarization: relies on random scalars that can be sub-optimal

» Hypervolume improvement: not scalable for high-dimensional input
spaces and large number of objective functions

» Uncertainty and information theory: They either maximize information
gain about the optimal Pareto set X™ and rely on approximating a very
expensive and high-dimensional distribution or minimize the
uncertainty over a finite set of points.

Our Approach:

d MESMOC framework selects the candidate input x for evaluation that
maximizes the information gain about the optimal Pareto front Y*

» Equivalent to expected reduction in entropy over the Pareto front Y*

» Relies on a computationally cheap and low-dimensional m.k<<m.d
distribution, where k is the number of objectives

J Key advantages of MESMOC
» Robust to the number of samples for AF computation
» Scalable for high-dimensions via output space entropy search
» Tight approximation with closed-form expression
» Two real world applications to show the effectiveness of our algorithm
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JInput space entropy-based acquisition function
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JOutput space entropy-based acquisition function
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JHow to sample Y™ ?
» Sample functions from posterior GPs based on random Fourier features
sampling procedure. We approximate each GP prior as f; = ¢(x)70
and C; = ¢(x)T0 where 8 ~ N(0,I).
» Solve a cheap constrained multi-objective optimization problem over

the sampled functions and constraints f; ... fi, C; ... C;to and compute
sample Pareto front

1 For each function and constraint, select the maximum-value in the
cheap Pareto front as an upper bound for the truncated Gaussian

AMESMOC’s Acquisition Function
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Experiments and Results

J Analog circuit optimization :

» Optimizing the design of a multi-output switched-capacitor voltage
regulator via Cadence circuit simulator

» Each candidate circuit design is defined by 33 input variables (d=32)

» Our problem has a total of nine functions and nine constraints

 Electrified aviation power system design:

» Optimizing the design of electrified aviation power system of unmanned
aerial vehicle (UAV) via a time-based static sitmulation

» Each candidate design is defined by 5 input variables (d=5)

» Our problem has a total of two functions and five constraints

» Only 9% of all designs satisfy all constraints

J Evaluation metrics

> The Pareto hypervolume : The volume between Y, and a reference

point
J MESMOC vs. State-of-the-art

» MESMOC performs better than all baselines and converges faster

» For UAV experiment, despite the hardness of the problem, 50% of the
designs selected by MESMOC satisty all the constraints while for
PESMOC, MOEAD, and NSGA-II this was 1.5%,9.5%, and 7.5%
respectively

» For circuit experiment: MESMOC can achieve the highest conversion
efficiency of 88.81% (12.61% improvement when compared with
PESMOC and 17.86% improvement when compared with NSGA-II)
with similar output ripples.
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