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qBayesian optimization (BO) is a framework to maximize expensive 
black-box functions using the following elements: 

Ø Statistical models as a prior for the functions: Gaussian processes 
(GPs) can provide prediction 𝜇 𝑥 and uncertainty via variance 𝜎(𝑥)

Ø Acquisition function to score the utility of evaluating input 𝑥
Ø Optimization procedure to select the best input 𝑥 for evaluation

Constrained Multi-Objective Bayesian Optimization

qInput space entropy-based acquisition function

qOutput space entropy-based acquisition function

qHow to sample 𝒀∗ ?  
Ø Sample functions from posterior GPs based on random Fourier features 

sampling procedure. We approximate each GP prior as &𝑓! = 𝜙 𝑥 "𝜃
and  &𝐶! = 𝜙 𝑥 "𝜃 where 𝜃 ~ 𝑁(0, 𝐼).

Ø Solve a cheap constrained multi-objective optimization problem over 
the sampled functions and constraints &𝑓#… &𝑓$ , &𝐶#… &𝐶%to and compute 
sample Pareto front 

q For each function and constraint, select the maximum-value in the 
cheap Pareto front as an upper bound for the truncated Gaussian

qMESMOC’s Acquisition Function 

MESMOC Algorithm

qDrawbacks of existing methods
ØDoes not handle constraints
ØGenetic algorithms assume that the functions are cheap to evaluate and 

require a very large number of evaluations
ØScalarization: relies on random scalars that can be sub-optimal 
ØHypervolume improvement: not scalable for high-dimensional input 

spaces and large number of objective functions
ØUncertainty and information theory: They either maximize information 

gain about the optimal Pareto set 𝑋∗ and rely on approximating a very 
expensive and high-dimensional distribution or minimize the 
uncertainty over a finite set of points. 

Prior Work and Our Contributions

Experiments and Results

Our Approach: 
q MESMOC framework selects the candidate input 𝑥 for evaluation that 

maximizes the information gain about the optimal Pareto front 𝒀*
Ø Equivalent to expected reduction in entropy over the Pareto front 𝒀*  
Ø Relies on a computationally cheap and low-dimensional 𝑚.𝑘≪𝑚.𝑑

distribution, where 𝑘 is the number of objectives

q Key advantages of MESMOC
Ø Robust to the number of samples for AF computation
Ø Scalable for high-dimensions via output space entropy search
Ø Tight approximation with closed-form expression
Ø Two real world applications to show the effectiveness of our algorithm

q Analog circuit optimization :
Ø Optimizing the design of a multi-output  switched-capacitor  voltage  

regulator  via  Cadence  circuit  simulator
Ø Each candidate circuit design is defined by 33 input variables (d=32)
Ø Our problem has a total of nine functions and nine constraints

q Electrified aviation power system design:
Ø Optimizing the design of electrified aviation power system of unmanned 

aerial vehicle (UAV) via a time-based static simulation
Ø Each candidate design is defined by 5 input variables (d=5)
Ø Our problem has a total of two functions and five constraints
Ø Only 9% of all designs satisfy all constraints

q Evaluation metrics
Ø The Pareto hypervolume :  The volume between  8𝑌' and a reference 

point
q MESMOC vs. State-of-the-art
Ø MESMOC performs better than all baselines and converges faster
Ø For UAV experiment, despite the hardness of the problem, 50% of the 

designs selected by MESMOC satisfy all the constraints while for 
PESMOC, MOEAD, and NSGA-II this was 1.5%, 9.5%, and 7.5% 
respectively

Ø For circuit experiment: MESMOC can achieve the highest conversion 
efficiency of 88.81% (12.61% improvement when compared with 
PESMOC and 17.86% improvement when compared with NSGA-II) 
with similar output ripples. 
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next input for evaluation. ParEGO is simple and fast, but more advanced approaches often outperform
it. Many methods optimize the Pareto hypervolume (PHV) metric [5] that captures the quality of a
candidate Pareto set. This is done by extending the standard acquisition functions to PHV objective,
e.g., expected improvement in PHV (EHI) [5] and probability of improvement in PHV (SUR)[17].
Unfortunately, algorithms to optimize PHV based acquisition functions scale very poorly and are
not feasible for more than two objectives. SMSego is relatively faster method [19]. To improve
scalability, the gain in hypervolume is computed over a limited set of points: SMSego finds those
set of points by optimizing the posterior means of the GPs. A common drawback of this family of
algorithms is that reduction to single-objective optimization can potentially lead to more exploitation
behavior with sub-optimal results.

PAL [31] and PESMO [7] are principled algorithms based on information theory. PAL tries to
classify the input points based on the learned models into three categories: Pareto optimal, non-Pareto
optimal, and uncertain. In each iteration, it selects the candidate input for evaluation towards the
goal of minimizing the size of uncertain set. PAL provides theoretical guarantees, but it is only
applicable for input space X with finite set of discrete points. PESMO [7] relies on input space
entropy based acquisition function and iteratively selects the input that maximizes the information
gained about the optimal Pareto set X ⇤. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations, which can be potentially sub-optimal;
and b) optimization, even after approximations, is expensive c) performance is strongly dependent
on the number of Monte-Carlo samples. In comparison, our proposed output space entropy based
acquisition function overcomes the above challenges, and allows efficient and robust optimization.
More specifically, the time complexities of acquisition function computation in PESMO and MESMO
ignoring the time to solve cheap MO problem that is common for both algorithms are O(SKm

3)
and O(SK) respectively, where S is the number of Monte-Carlo samples, K is the number of
objectives, and m is the size of the sample Pareto set in PESMO. Additionally, as demonstrated in
our experiments, MESMO is very robust and performs very well even with one sample.

4 MESMO Algorithm for Multi-Objective Optimization
In this section, we explain the technical details of our proposed MESMO algorithm. We first mathe-
matically describe the output space entropy based acquisition function and provide an algorithmic
approach to efficiently compute it. Subsequently, we theoretically analyze MESMO in terms of
asymptotic regret bounds.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate models in prior
work on single and multi-objective BO [8, 27, 26, 25, 7]. Similar to prior work [7], we model the
objective functions f1, f2, · · · , fK using K independent GP models M1,M2, · · · ,MK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}

t�1
i=1 be the training data from past t�1 function

evaluations, where xi 2 X is an input and yi = {y
1
i , y

2
i , · · · , y

K
i } is the output vector resulting from

evaluating functions f1, f2, · · · , fK at xi. We learn surrogate models M1,M2, · · · ,MK from D.

Output space entropy based acquisition function. Input space entropy based methods like PESMO
[7] selects the next candidate input xt (for ease of notation, we drop the subscript in below discussion)
by maximizing the information gain about the optimal Pareto set X ⇤. The acquisition function based
on input space entropy is given as follows:

↵(x) = I({x,y},X ⇤
| D) (4.1)

= H(X ⇤
| D)� Ey[H(X ⇤

| D [ {x,y})] (4.2)
= H(y | D,x)� EX⇤ [H(y | D,x,X ⇤)] (4.3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior distribution
P (X ⇤

| D) over the optimal Pareto set X ⇤ as given in Equations 4.2 and 4.3 (resulting from
symmetric property of information gain). This mathematical formulation relies on a very expensive
and high-dimensional (m · d dimensions) distribution P (X ⇤

| D), where m is size of the optimal
Pareto set X ⇤. Furthermore, optimizing the second term in r.h.s poses significant challenges: a)
requires a series of approximations [7] which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition function, we
take an alternative route and propose to maximize the information gain about the optimal Pareto
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front Y⇤. This is equivalent to expected reduction in entropy over the Pareto front Y⇤, which relies
on a computationally cheap and low-dimensional (m ·K dimensions, which is significantly less than
m · d as K ⌧ d in practice) distribution P (Y⇤

| D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y⇤ is given as:

↵(x) = I({x,y},Y⇤
| D) (4.4)

= H(Y⇤
| D)� Ey[H(Y⇤

| D [ {x,y})] (4.5)
= H(y | D,x)� EY⇤ [H(y | D,x,Y⇤)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2⇡))

2
+

KX

i=1

ln(�i(x)) (4.7)

where �2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of equation 4.6

is an expectation over the Pareto front Y⇤. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY⇤ [H(y | D,x,Y⇤)] '
1

S

SX

s=1

[H(y | D,x,Y⇤
s )] (4.8)

where S is the number of samples and Y
⇤
s denote a sample Pareto front. The main advantages of our

acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y⇤

s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y
⇤
s ?

We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y

⇤
s , we first sample functions from the posterior GP models via random fourier

features [8, 20] and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = �(x)T ✓, where
✓ ⇠ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: �(x)T ✓, where ✓ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: ✓|D ⇠

N(A�1�Tyn,�
2A�1), where A = �T�+ �

2I and �T = [�(x1), · · · ,�(xt�1)].

Cheap MO solver. We sample f̃i from GP model Mi for each of the K functions as described
above. A cheap multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k
is solved to compute sample Pareto front Y⇤

s . This cheap multi-objective optimization also allows us
to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y⇤
s = {z1, · · · , zm} be the sample

Pareto front, where m is the size of the Pareto front and each zi = {z
1
i , · · · , z

K
i } is a K-vector

evaluated at the K sampled functions. The following inequality holds for each component yj of the
K-vector y = {y

1
, · · · , y

K
} in the entropy term H(y | D,x,Y⇤

s ):

y
j
 max{zj1, · · · z

j
m} 8j 2 {1, · · · ,K} (4.9)

The inequality essentially says that the j
th component of y (i.e., yj) is upper-bounded by a value

obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤
s . This

inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · z

j
m}. However, by definition, y is a non-dominated point because no

point dominates it in the jth dimension. This results in y 2 Y
⇤
s which is a contradiction. Therefore,

our hypothesis that yj > max{zj1, · · · z
j
m} is incorrect and inequality 4.9 holds.
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The inequality essentially says that the j
th component of y (i.e., yj) is upper-bounded by a value

obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤
s . This

inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · z

j
m}. However, by definition, y is a non-dominated point because no

point dominates it in the jth dimension. This results in y 2 Y
⇤
s which is a contradiction. Therefore,

our hypothesis that yj > max{zj1, · · · z
j
m} is incorrect and inequality 4.9 holds.

By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
y
j
 max{zj1, · · · z

j
m}. Furthermore, a common property of entropy measure allows us to decompose

the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x,Y⇤
s ) '

KX

j=1

H(yfj |D,x,max{z
fj
1 , · · · z

fj
m}) +

CX

j=1

H(ycj |D,x,max{z
cj
1 , · · · z

cj
m})

(4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[14] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x,Y⇤

s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x,Y⇤
s ) '

KX

j=1

"
(1 + ln(2⇡))

2
+ ln(�fj (x)) + ln�(�fj

s (x))�
�
fj
s (x)�(�

fj
s (x))

2�(�
fj
s (x))

#

+
KX

j=1


(1 + ln(2⇡))

2
+ ln(�cj (x)) + ln�(�cj

s (x))�
�
cj
s (x)�(�

cj
s (x))

2�(�
cj
s (x))

�

(4.11)

where �
cj
s (x) =

y
cj⇤
s �µcj (x)

�cj (x)
, �fj

s (x) =
y
fj⇤
s �µfj

(x)

�fj
(x) , ycj⇤s and y

fj⇤
s are the maximum values of

constraint C̃j and function f̃j reached after the cheap multi-objective optimization over sampled
functions and constraints. � and � are the p.d.f and c.d.f of a standard normal distribution respectively.
By combining equations 4.7 and 4.11 with Equation 4.6, we get the final form of our acquisition
function as shown below:

↵(x) '
1

S

SX

s=1

2

4
KX

j=1

�
fj
s (x)�(�

fj
s (x))

2�(�
fj
s (x))

� ln�(�fj
s (x)) +

LX

j=1

�
cj
s (x)�(�

cj
s (x))

2�(�
cj
s (x))

� ln�(�cj
s (x))
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5 (1)

R
j =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.
Theorem 1. Let P be a distribution over vector [y1⇤, · · · , yK⇤], where each yj⇤ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
timization problem over sampled functions from the K Gaussian process models. Let the observation
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MESMOC: OUTPUT SPACE ENTROPY SEARCH ALGORITHM 
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