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Abstract

Neural Ordinary Differential Equations (NODEs) use a neural network to model
the instantaneous rate of change in the state of a system. However, despite their
apparent suitability for dynamics-governed time-series, NODEs present a few dis-
advantages. First, they are unable to adapt to incoming data-points, a fundamental
requirement for real-time applications imposed by the natural direction of time.
Second, time-series are often composed of a sparse set of measurements, which
could be explained by many possible underlying dynamics. NODEs do not capture
this uncertainty. To this end, we introduce Neural ODE Processes (NDPs), a new
class of stochastic processes determined by a distribution over Neural ODEs. By
maintaining an adaptive data-dependent distribution over the underlying ODE, we
show that our model can successfully capture the dynamics of low-dimensional
systems from just a few data-points. At the same time, we demonstrate that NDPs
scale up to challenging high-dimensional time-series with unknown latent dynamics
such as rotating MNIST digits.

1 Introduction

Many time-series that arise in the natural world, such as the state of a harmonic oscillator, the
populations in an ecological network or the spread of a disease, are the product of some underlying
dynamics. Sometimes, as in the case of a video of a swinging pendulum, these dynamics are latent
and do not manifest directly in the observation space (pixel space, in this case). Neural Ordinary
Differential Equations (NODEs) [2], which use a neural network to parametrise the velocity of an
ODE, have become a natural choice for capturing the dynamics of such time-series [10, 15, 16, 18, 22].

However, despite their fundamental connection to dynamics-governed time-series, NODEs present
certain limitations that hinder their adoption in these settings. Firstly, NODEs cannot adjust predic-
tions as more data is collected without retraining the model. This ability is particularly important for
real-time applications, where it is desirable that models adapt to incoming data points as time passes
and more data is collected. Secondly, without a larger number of regularly spaced measurements,
there is usually a range of plausible underlying dynamics that can explain the data. NODEs, however,
only offer a single maximum likelihood prediction and are unable to learn stochastic dynamics. As
many real-world time-series are comprised of sparse sets of measurements, often irregularly sampled,
the model can fail to represent the diversity of suitable solutions.
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To address these limitations, we introduce Neural ODE Processes (NDPs), a new class of stochastic
processes governed by stochastic data-adaptive dynamics. Our probabilistic Neural ODE formulation
relies on and extends the framework provided by Neural Processes (NPs) [6, 7], and runs parallel
to other attempts to incorporate application-specific inductive biases in this class of models such
as Attentive NPs [11], ConvCNPs [8], and MPNPs [3]. We demonstrate that NDPs can adaptively
capture many potential dynamics of low-dimensional systems when faced with limited amounts of
data. Additionally, we show that our approach scales to high-dimensional time series with latent
dynamics such as rotating MNIST digits [1].

2 Background and Formal Problem Statement

Problem Statement We consider modelling random functions F : T → Y , where T = [t0,∞)
represents time and Y ⊂ Rd is a compact subset of Rd. We assume F has a distribution D, induced
by another distribution D′ over some underlying dynamics that govern the time-series. Given a
specific instantation F of F , let C = {(tCi ,yC

i )}i∈IC be a set of samples from F with some indexing
set IC. We refer to C as the context points, as denoted by the superscript C. For a given context C,
the task is to predict the values {yT

j }j∈IT that F takes at a set of target times {tTj}j∈IT , where IT is
another index set. We call T = {(tTj ,yT

j )} the target set. Conventionally, as in Garnelo et al. [7], the
target set forms a superset of the context set and we have C ⊆ T.

During training, we assume access to a dataset of (potentially irregular) time-series sampled from F .
We are interested in learning the underlying distribution over the dynamics as well as the induced
distribution over functions. We note that when the dynamics are not latent and manifest directly in
the observation space Y , the distribution over ODE trajectories and the distribution over functions
coincide.

Neural ODEs NODEs are a class of models that parametrize the velocity ż of a state z with the
help of a neural network ż = fθ(z, t). Given the initial time t0 and target time tTi , NODEs predict
the corresponding state ŷT

i by performing the following integration and decoding operations:

z(t0) = h1(y0), z(tTi ) = z(t0) +

∫ tT
i

t0

fθ(z(t), t)dt, ŷT
i = h2(z(t

T
i )), (1)

where h1 and h2 can be neural networks. When the dimensionality of z is greater than that of y and
h1, h2 are linear, the resulting model is an Augmented Neural ODE [5] with input layer augmentation
[14]. The extra dimensions offer the model additional flexibility as well as the ability to learn
higher-order dynamics [16].

When applied to time-series prediction, NODEs are typically trained by minimising the mean squared
error (MSE) between ŷC

i and yC
i over all time-steps {tCi } with i ∈ IC. They provide only a maximum-

likelihood prediction and accounting for additional data requires further training or retraining entirely.

Neural Processes (NPs) NPs model a random function F : X → Y , where X ⊆ Rd1 and
Y ⊆ Rd2 . The NP represents a given instantiation F of F through the global latent variable z,
which parametrises the variation in F . Thus, we have F(xi) = g(xi, z). For a given context set
C = {(xC

i ,y
C
i )} and target set x1:n, y1:n, the generative process is given by:

p(y1:n, z|x1:n,C) = p(z|C)
n∏
i=1

N (yi|g(xi, z), σ2), (2)

where p(z) is chosen to be a multivariate standard normal distribution and y1:n is a shorthand for the
sequence (y1, . . . ,yn). The model can be trained using an amortised variational inference procedure
that naturally gives rise to a permutation-invariant encoder qθ(z|C), which stores the information
about the context points. Conditioned on this information, the decoder g(x, z) can make predictions
at any input location x. We note that while the domain X of the random function F is arbitrary, in
this work we are interested only in stochastic functions with domain on the real line (time-series).
Therefore, from here our notation will reflect that, using t as the input instead of x. The output y
remains the same.
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Figure 1: Schematic diagram of Neural ODE Processes. Left: Observations from a time series, the
context set , are encoded and aggregated to form r which parametrises the global latent variable
z. Middle: Samples from the global latent variable, z, are used to initialise and condition the latent
Neural ODE, with each sample producing a plausible, coherent trajectory. Right: Predictions at a
target time, tTi , are made by decoding the state of the ODE, l(tTi ) together with tTi and, optionally,
the sample z′ used by that trajectory. An example is represented by the connected from the ODE
position plot to the Predictions plot. Middle, right: dark lines relate to the same sample, fainter lines
to other samples.

3 Neural ODE Processes

Model Overview We introduce Neural ODE Processes (NDPs), a class of dynamics-based models
that learn to approximate random functions defined over time. To that end, we consider an NP whose
context Z is used to determine a distribution over ODEs. Concretely, Z gives a distribution over the
initial position (and optionally – the initial velocity) and, at the same time, stochastically conditions
its instantaneous velocity. The positions given by the ODE trajectories at any time tTi are then decoded
to give the predictions at tTi . In what follows, we offer a detailed description of each component of
the model. A schematic of the model can be seen in Figure 1.

3.1 Generative Process

Figure 2: Graphical
model of NDPs. The
dark nodes denote ob-
served random variables,
while the light nodes de-
note hidden random vari-
ables. IC and IT rep-
resent the indexing sets
for the context and target
points, respectively. Full
arrows show the genera-
tive process. Dotted ar-
rows indicate inference.

We first describe the generative process behind NDPs. A graphical model
perspective of this process is also included in Figure 2.

Encoder and Aggregator Consider a given context set C =
{(tCi ,yC

i )}i∈IC of points coming from a time-series. As in NPs, we
are first interested in producing a distribution over functions induced
by the conditional prior over Z ∼ q(z|C). To represent this distribu-
tion, the NDP encoder produces a representation ri = fe((t

C
i ,y

C
i )) for

each context pair (tCi ,y
C
i ). The function fe is parametrised as a neural

network, fully connected or convolutional, depending on the nature of
y. An aggregator combines all the representations ri to form a global
representation, r, that parametrises the distribution of the global latent
context, Z ∼ q(z|C) = N

(
z|µz(r),diag(σz(r))

)
. As the aggregator

must preserve order invariance, we choose to take the element-wise mean.

Latent ODE Unlike NPs, which directly decode Z to obtain a distri-
bution over functions, we are interested in capturing the dynamics that
govern the time-series and exploiting the temporal nature of the data. To
that end, we allow the latent context to evolve according to a Neural ODE
[2] controlled by Z.

We begin by splitting the random context Z ∼ p(z|C) into an initial
latent position L(t0) and a sub-context Z ′ such that Z = (L(t0), Z

′).
Splitting Z factorises the uncertainty in the underlying dynamics into an
uncertainty over the initial condition (given by L(t0)) and an uncertainty
over the ODE derivative (given by Z ′).
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Then, using the target times, tT1:n = (tT1, ..., t
T
N ), the latent state at a given time is found by evolving a

Neural ODE:

l(tTi ) = l(t0) +

∫ tT
i

t0

fθ(l(t), t,z
′)dt, (3)

where fθ is a neural network that models the derivative of l. As explained above, we allow z′

to modulate the derivative of this ODE. Ultimately, for fixed initial conditions, this results in an
uncertainty over the ODE trajectories.

Decoder To obtain a prediction at a time tTi , we decode the random state of the ODE at time tTi ,
given by L(tTi ). Assuming that the outputs are noisy, for a given sample l(tTi ) from this stochastic
state, the decoder g produces a distribution over Y T

ti ∼ p
(
yT
i |g(l(tTi ), ti)

)
parametrised by the decoder

output. Concretely, for regression tasks, we take the target output to be normally distributed with
constant (or optionally learned) variance Y T

ti ∼ N
(
yi|g(l(ti), ti), σ2

)
. When Y T

ti is a random vector
formed of independent binary random variables (e.g. a black and white image), we use a Bernoulli
distribution Y T

ti ∼
∏dim(Y )
j=1 Bernoulli

(
g(l(ti), ti)j

)
.

Putting everything together, for a set of observed context points C, the generative process of NDPs
is given by p(y1:n, z|t1:n,C) = p(z|C)∏n

i=1 p
(
yi|g(l(ti), ti)

)
, where we highlight once again that

l(ti) also implicitly depends on z.

3.2 Learning and Inference

Since the true posterior is intractable because of the highly non-linear generative process, the model
is trained using an amortised variational inference procedure. The variational lower-bound on the
likelihood of the target values ym+1:n at tm+1:n given the known context t1:m,y1:m is as follows:

log p(ym+1:n|t1:n,y1:m) ≥ Eq(z|t1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, ti) + log
q(z|t1:m,y1:m)

q(z|t1:n,y1:n)

]
, (4)

where q gives variational posterior (the encoder described in Section 3.1). The full derivation can be
found in Appendix D. Pseudo-code for this training procedure is also given in Appendix E.

4 Experiments
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Figure 3: NPs and NDPs on the Lotka-Volterra task. Left: NPs are less able to model the dynamics,
diverging from the ground truth even in regions with frequent context samples, whereas the variation
in the NDP is more appropriately concentrated in the less sampled regions. Middle: Plotting the
theoretically conserved quantity V better exposes how the models deviate from the ground truth.
Right: In phase space (u, v) the NDP is more clearly seen to better track the ground truth.

4.1 Predator-Prey Dynamics

The Lotka-Volterra Equations are used to model the dynamics of a two species system, where one
species predates on the other. The populations of the prey, u, and the predator, v, are given by the
differential equations:

du

dt
= αu− βuv, dv

dt
= δuv − γv. (5)
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Figure 4: Rotating MNIST dataset. First row: The ground truth time-
series. Second row: Seven context points supplied to the model. Third
row: NP predictions. Fourth row: NDP predictions. NDPs perform better
at interpolation, but neither model performs well at extrapolation.

Table 1: MSE on the Rotat-
ing MNIST test set.

Model MSE ×10−2

ODE2VAE-KL 1.94 ± 0.03
NP (1st) 3.18 ± 0.56
NDP (1st) 1.94 ± 0.40
NP (7) 2.80 ± 0.42
NDP (7) 1.63 ± 0.49

for positive real parameters, α, β, δ, γ. Intuitively, when prey is plentiful, the predator population
increases (+δuv), and when there are many predators, the prey population falls (−βuv). The
populations exhibit periodic behaviour, with the phase-space orbit determined by the conserved
quantity V = δu− γ ln(u) + βv − α ln(v). Thus for any predator-prey system there exists a range
of stable functions describing the dynamics, with any particular realisation being determined by the
initial conditions, (u0, v0). We consider the system (α, β, γ, δ) = (2/3, 4/3, 1, 1).

We find that NDPs are able to train in fewer epochs to a lower loss (Appendix G.2). We record final
test MSEs (×10−2) at 44 ± 4 for the NPs and 15 ± 2 for the NDPs. NDPs perform better despite
having a representation r and context z with lower dimensionality, leading to 10% fewer parameters
than NPs. Figure 3 presents these advantages for a single time series.

4.2 Rotating MNIST

We consider the rotating MNIST digits task [1, 22]. Following Çağatay Yıldız et al. [22], we remove
the digit corresponding to the 4th rotation from all time-series in the dataset and use it as a test frame,
in order to compare directly with their method. Additionally, we remove four random rotation angles
from each sequence in the dataset to simulate irregularly sampled data. At test time, we report the
MSE for the 4th rotation angle.

We perform two types of evaluation. We evaluate against NPs in predicting the 4th digit given
a random context set C, as in previous tasks. To compare with ODE2VAE [22], we consider the
restricted setting where the context set supplied at testing time C = {(y(t0), t0)} is formed of the
single image from time t0. The latter setup is required as the ODE2VAE is designed to evolve a latent
Bayesian Neural ODE whose distribution over the initial position is given by y(t0) only. In contrast,
NDPs can handle arbitrary contexts. We delay a detailed analysis of the differences between NDPs
and ODE2VAE to Appendix C.

The top part of Table 1 gives the results for the restricted setting. As expected, NDPs perform
better than NPs. At the same time, NDPs have a competitive MSE to ODE2VAE, despite having the
disadvantage of not being especially designed or trained for operating in this setting. The second part
of Table 1 gives the MSE when a random context of size seven was used. Once again, NDPs show
superior performance. We also illustrate this advantage qualitatively in Figure 4. In Appendix G.4 we
show that the model is also able to capture diverse stylistic aberrations.

5 Conclusion

We introduce Neural ODE Processes (NDPs), a new class of stochastic processes suitable for
modelling data-adaptive stochastic dynamics. NDPs tackle the two main problems faced by Neural
ODEs applied to dynamics-governed time series: adaptability to incoming data points and uncertainty
in the underlying dynamics when the data is sparse and, potentially, irregularly sampled. To do
so, NDPs include a probabilistic ODE as an additional encoded structure, thereby incorporating
the inductive bias that the time-series is the direct or latent manifestation of an underlying ODE.
Furthermore, NDPs maintain the scalability of NPs to very large inputs. We evaluate our model
on synthetic 2D data, as well as higher-dimensional problems such as rotating MNIST digits. Our
method exhibits superior training performance when compared with NPs, yielding a lower loss in
fewer iterations. Whether or not the underlying ODE of the data is latent, we find that where there is
a fundamental ODE governing the dynamics, NDPs perform well.
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6 Broader Impact

Neural ODEs are a new class of models whose full range of real-world applications are yet to be
determined. Our experiments have mostly focused on scientific applications such as learning the
the evolution of populations in an ecological network. NDPs could also find applicability in civil
engineering by providing assistance with predicting things like the vibrations of a material under
stress. At the same time, we cannot neglect the possibility of these civil engineering uses cases to
be transferred to a military one. However, our improvements remain incremental in that regard, and
their effect should be covered by current institutional norms.
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A Neural ODE Processes as Stochastic Processes

The Kolmogorov Extension Theorem states that exchangeability and consistency are necessary and
sufficient conditions for a collection of joint marginal distributions to define a stochastic process
[7, 17]. We define these conditions and show that the NDP model satisfies them.

Before giving the proofs, we state the following important Lemma.
Lemma A.1. As in NPs, the decoder output g(l(t), t) can be seen as a function F(t) for a given
fixed z.

Proof. This follows directly from the fact that l(t) = l(t0) +
∫ T
t0
fθ(l(t), t,z

′)dt can be seen as a
function of t. This is because z = [l(t0), z

′] and the integration process is deterministic for a given z
(i.e. for fixed initial conditions and velocity).

Definition A.1 (Exchangeability). Exchangeability refers to the invariance of the joint distribution
ρt1:n(y1:n) under permutations of y1:n. That is, for a permutation π of {1, 2, ..., n}, π(t1:n) =
(tπ(1), ..., tπ(n)) and π(y1:n) = (yπ(1), ...,yπ(n)), the joint probability distribution ρt1:n(y1:n) is
invariant if ρt1:n(y1:n) = ρπ(t1:n)(π(y1:n)).
Proposition A.1. NDPs satisfy the exchangeability condition.

Proof. This follows directly from Lemma A.1, since any permutation on t1:n would automatically
act on F1:n and consequently on p(y1:n, z|t1:n), for any given z.

Definition A.2 (Consistency). Consistency says if a part of a sequence is marginalised out, then the
joint probability distribution is the same as if it was only originally taken from the smaller sequence:

ρt1:m(y1:m) =

∫
ρt1:n(y1:n)dym+1:n. (6)

Proposition A.2. NDPs satisfy the consistency condition.

Proof. Based on Lemma A.1 we can write the joint distribution (similarly to a regular NP) as follows:

ρt1:n(y1:n) =

∫
p(F)

n∏
i=1

N (yi|F(ti), σ2)dF . (7)

Because the density of any yi depends only on the corresponding ti, integrating out any subset of
y1:n gives the joint distribution of the remaining random variables in the sequence. Thus, consistency
is guaranteed.

It is important to note that the stochasticity comes from sampling the full context z. There is no
stochasticity within the ODE, such as Brownian motion, though stochastic ODEs have previously
been explored [9, 12, 13, 20]. For any given context z, both the latent state trajectory and the
observation space trajectory are fully determined.

B Running Time Complexity

For a model with n context points and m target points, an NP has running time complexity O(n+m),
since the model only has to encode each context point and decode each target point. However, a
Neural ODE Process has added complexity due to the integration process. Firstly, the integration
itself has runtime complexity O(NFE), where NFE is the number of function evaluations. In turn, the
worst-case NFE depends on the minimum step size δ the ODE solver has to use and the maximum
time we are interested in, which we denote by tmax. Secondly, for settings where the target times
are not already ordered, an additional O

(
m log(m)

)
term is added for sorting them. This ordering is

required by the ODE solver.

Therefore, given that m ≥ n and assuming a constant tmax exists, the worst-case complexity of NDPs
is O

(
m log(m)

)
. For applications where the times are already sorted (e.g. real-time applications),

the complexity falls back to the original O
(
n+m

)
. In either case, NDPs scale well with the size of
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the input. We note, however, that the integration steps tmax/δ could result in a very large constant,
hidden by the big-O notation. Nonetheless, modern ODE solvers use adaptive step sizes that adjust
to the data that has been supplied and this is unlikely to be a problem in practice.

In our experiments, when sorting is used, we notice NDPs are between 1 and 1.5 orders of magnitude
slower to train than NPs in terms of wall-clock time as seen below.

B.1 Wall Clock Training Times

To explore the additional term in the runtime given in Section B, we record the wall clock time for
each model to train for 30 epochs on 1D synthetic datasets, over 5 seeds. The experiments were run
on an Nvidia Titan XP. The results can be seen in Table 2.

Table 2: Table of ratios, of Neural ODE Process and Neural Process training times on different 1D
synthetic datasets.

Time Ratios Sine Exponential Linear Oscillators
NDP/NP 22.1 ± 0.9 23.6 ± 0.9 10.9 ± 1.4 22.2 ± 2.3

NP Training Time /s 22.4 ± 0.2 45.5 ± 0.3 100.9 ± 0.3 23.2 ± 0.4

C Discussion and Related Work

NDPs as Neural Processes From the perspective of stochastic processes, NDPs can be seen as
a generalisation of NPs defined over time and, as such, existing improvements in this family are
likely orthogonal to our own. For instance, following the work of Kim et al. [11], we would expect
adding an attention mechanism to NDPs to reduce uncertainty around context points. Additionally,
the intrinsic sequential nature of time could be further exploited to model a dynamically changing
sequence of NDPs as in Sequential NPs [19]. For application domains where the observations evolve
on a graph structure, such as traffic networks, relational information could be exploited with message
passing operation as in MPNPs [3].

NDPs as Neural ODEs From a dynamics perspective, NDPs can be thought of as an amortised
Bayesian Neural ODE. In this sense, ODE2VAE [22] is the model that is most closely related to our
method. While there are many common ideas between the two, significant differences exist. Firstly,
NDPs do not use an explicit Bayesian Neural Network but are linked to them through the theoretical
connections inherited from NPs [7]. NDPs handle the uncertainty in the velocity (and acceleration)
through Z ′, whereas ODE2VAE uses a distribution over the NODE’s weights. Secondly, NDPs
stochastically condition the latent NODE’s output (the particle’s velocity) and initial position on an
arbitrary context set of variable size. In contrast, ODE2VAE conditions only the initial position and
initial velocity on the first element and the first M elements in the sequence, respectively. Therefore,
our model can dynamically adapt the dynamics to any observed time points. From that point of view,
our model also runs parallel to other attempts of making Neural ODEs capable to dynamically adapt
to irregularly sampled data points [10].

D ELBO Derivation

As noted in Remark A.1, the joint probability p(y, z|t) = p(z)N (yi|g(l(t), t,z′), σ2) can still be
seen as a function that depends only on t, since the ODE integration process is deterministic for
a given z. Therefore, the ELBO derivation proceeds as usual [7]. First, we derive the ELBO for
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log p(y1:n|t1:n).
log p(y1:n|t1:n) = DKL

(
q(z|t1:n,y1:n)‖p(z|t1:n,y1:n)

)
+ LELBO (8)

≥ LELBO = Eq(z|t1:n,y1:n)

[
− log q(z|t1:n,y1:n) + log p(y1:n, z|t1:n)

]
(9)

= −Eq(z|t1:n,y1:n) log q(z|t1:n,y1:n) (10)

+ Eq(z|t1:n,y1:n)

[
log p(z) + log p(y1:n|t1:n, z)

]
(11)

= Eq(z|t1:n,y1:n)

[
n∑
i=1

log p(yi|z, ti) + log
p(z)

q(z|t1:n,y1:n)

]
(12)

Since at training time we are interested in the log evidence given some context, we can split this
sequence into the context t1:m,y1:m and the target tm+1:n,ym+1:n. Then, we want to maximise
log p(ym+1:n|t1:n,y1:m). Using the derivation above, we obtain a similar lower-bound, but with a
new prior p(z|t1:m,y1:m), updated to reflect the additional information supplied by the context.

log p(ym+1:n|t1:n,y1:m) ≥ Eq(z|t1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, ti) + log
p(z|t1:m,y1:m)

q(z|t1:n,y1:n)

]
(13)

If we approximate the true p(z|t1:m,y1:m) with the variational posterior, this takes the final form

log p(ym+1:n|t1:n,y1:m) ≥ Eq(z|t1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, ti) + log
q(z|t1:m,y1:m)

q(z|t1:n,y1:n)

]
(14)

E Learning and Inference Procedure

We include below the pseudocode for training NDPs. For clarity of exposition, we give code for a
single time-series. However, in practice, we batch all the operations in lines 6− 15.

Algorithm 1: Learning and Inference in Neural ODE Processes
Input :A dataset of time-series {Xk}, k ≤ K, where K is the total number of time-series

1 Initialise NDP model with parameters θ
2 Let m be the number of context points and n the number of extra target points
3 for i← 0 to training_steps do
4 Sample m from U[1, max_context_points]
5 Sample n from U[1, max_extra_target_points]
6 Uniformly sample a time-series Xk

7 Uniformly sample from Xk the target points T = (Tt,Ty), where Tt is the time batch with
shape (m+ n, 1) and Ty is the corresponding outputs batch with shape (m+ n, dim(y))

8 Extract (unordered) the context set C = (Tt[0 : m],Ty[0 : m])
9 Compute q(z|C) using the variational encoder

10 Compute q(z|T) using the variational encoder
// During training, we sample from q(z|T)

11 Sample z from q(z|T) and split z = [l(t0), z
′]

12 Integrate to compute l(t) as in Equation 3 for all times t ∈ Tt
13 foreach time t ∈ Tt do
14 Use decoder to compute p(y(t)|g(l(t)), t)
15 Compute loss LELBO based on Equation 4
16 θ ←− θ − α∇θLELBO

It is worth highlighting that during training we sample z from the target posterior, rather than the
context posterior. This is because the expectation in Equation 4 is computed over the target posterior.
In contrast, at inference time we sample from the context posterior.

F Architectural Details

For the experiments with low dimensionality (1D, 2D), the architectural details are as follows:

10



• Encoder: [ti, yi] −→ ri: Multilayer Perceptron, 2 hidden layers, ReLU activations.
• Aggregator: r1:n −→ r: Taking the mean.
• Representation to Hidden: r −→ h: One linear layer followed by ReLU.
• Hidden to Context Mean: h −→ µz: One linear layer.
• Hidden to Context Variance: h −→ σz: One linear layer, followed by sigmoid, multiplied

by 0.9 add 0.1, i.e. σz = 0.1 + 0.9× sigmoid(Wh+ b).

• ODE Layers: [l, z′, t] −→ l̇: Multilayer Perceptron, two hidden layers, tanh activations.
• Decoder: h(l(tTi ), z

′, tTi ) −→ yT
i , Multilayer Perceptron with two hidden layers and ReLU

activations.

For the high-dimensional experiments (Rotating MNIST).

• Encoder: [ti, yi] −→ ri: Convolutional Neural Network, 4 layers with 16, 32, 64, 128
channels respectively and kernel size of 5, stride 2. ReLU activations. Batch normalisation.

• Aggregator: r1:n −→ r: Taking the mean.
• Representation to Hidden: r −→ h: One linear layer followed by ReLU.
• Hidden to Context Mean: h −→ µz: One linear layer.
• Hidden to Context Variance: h −→ σz: One linear layer, followed by sigmoid, multiplied

by 0.9 add 0.1, i.e. σz = 0.1 + 0.9× sigmoid(Wh+ b).

• ODE Layers: [l, z′, t] −→ l̇: Multilayer Perceptron, two hidden layers, tanh activations.
• Decoder: h(l(tTi ), z

′, tTi ) −→ yT
i : 1 linear layer followed by a 4 layer transposed Convolu-

tional Neural Network with 32, 128, 64, 32 channels respectively. ReLU activations. Batch
normalisation.

G Task Details and Additional Results

G.1 One Dimensional Regression

We carried out an ablation study over model variations on various 1D synthetic tasks—sines, expo-
nentials, straight lines and harmonic oscillators. Each task is based on some function described by a
set of parameters that are sampled over to produce a distribution over functions. In every case, the
parameters are sampled from uniform distributions. A trajectory example is formed by sampling
from the parameter distributions and then sampling from that function at evenly spaced timestamps, t,
over a fixed range to produce 100 data points (t, y). We give the equations for these tasks in terms of
their defining parameters and the ranges for these parameters in Table 3.

Task Form a b t # train # test
Sines y = a sin(t− b) (−1, 1) (− 1/2, 1/2) (−π, π) 490 10
Exponentials y = a/60× exp(t− b) (−1, 1) (− 1/2, 1/2) (−1, 4) 490 10
Straight lines y = at+ b (−1, 1) (− 1/2, 1/2) (0, 5) 490 10
Oscillators y = a sin(t− b) exp(− t/2) (−1, 1) (− 1/2, 1/2) (0, 5) 490 10

Table 3: Task details for 1D regression. a and b are sampled uniformly at random from the given
ranges. t is sampled at 100 regularly spaced intervals over the given range. 490 training examples
and 10 test examples were used in every case.

To test after each epoch, 10 random context points are taken, and then the mean-squared error and
negative log probability are calculated over all the points (not just a subset of the target points). Each
model was trained 5 times on each dataset (with different weight initialisation). We used a batch size
of 5, with context size ranging from 1 to 10, and the extra target size ranging from 0 to 5.3 The results
are presented in Figure 5. We see that NDPs reduce the loss in fewer iterations than NPs.

3As written in the problem statement in section 2, we make the context set a subset of the target set when
training. So we define a context size range and an extra target size range for each task.
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Figure 5: NPs and NDPs on the 1D datasets, we present the loss plots during training and example
posteriors on the sine data. On the sine data, we see that NDPs are able to give a larger range of
functions when only one point is available, and a smaller, more accurate range as more points in the
time series are observed. On the right and below we see that quantitatively NDPs are also able to
train to a lower loss in fewer epochs. This is expected for functions that are generated by ODEs. Both
models were trained for 30 epochs.

G.2 Lotka-Volterra System

To generate samples from the Lotka Volterra system, we sample different starting configurations,
(u0, v0) = (2E,E), where E is sampled from a uniform distribution in the range (0.25, 1.0). We
then evolve the Lotka Volterra system

du

dt
= αu− βuv, dv

dt
= δuv − γv. (15)

using (α, β, γ, δ) = (2/3, 4/3, 1, 1). This is evolved from t = 0 to t = 15 and then the times are
rescaled by dividing by 10.

The training for the Lotka-Volterra system can be seen in Figure 6. This was taken across 5 seeds,
with a training set of 40 trajectories, 10 test trajectories and batch size 5. We use a context size
ranging from 1 to 100, and extra target size ranging from 0 to 45. The test context size was fixed at
90 query times. NDP trains slightly faster with lower loss, as expected.
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Figure 6: Training NP and NDP on the Lotka-Volterra equations. Due to the additional encoding
structure of NDP, it can be seen that NDPs train in fewer iterations, to a lower loss than NPs.
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G.3 Handwritten Characters

The CharacterTrajectories dataset consists of single-stroke handwritten digits recorded using
an electronic tablet [4, 21]. The trajectories of the pen tip in two dimensions, (x, y), are of varying
length, with a force cut-off used to determine the start and end of a stroke. We consider a reduced
dataset, containing only letters that were written in a single stroke, this disregards letters such as
“f”, “i” and “t”. Whilst it is not obvious that character trajectories should follow an ODE, the related
Neural Controlled Differential Equation (NCDEs) model has been applied successfully to this task
[10]. We train with a training set with 49600 examples, a test set with 400 examples and a batch size
of 200. We use a context size ranging between 1 and 100, an extra target size ranging between 0 and
100 and a fixed test context size of 20. We visualise the training of the models in Figure 7 and the
models plotting posteriors in Figure 8.
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Figure 7: NPs and NDPs training on handwriting. NDPs perform slightly better, achieving a lower loss
in fewer iterations. However this is a marginal improvement, and we believe it is down to significant
diversity in the dataset, due to there being no fundamental differential equation for handwriting.

NP NDP

Figure 8: We test the models on drawing the letter “a” with varying numbers of context points. For a
few context points, the trajectories are diverse and not entirely recognisable. For example, for NP,
qualitatively the drawing looks more like a “v” than “a”. And for NDP, the drawing looks more like a
“q” than an “a”. As more context points are observed, the trajectories become less diverse and start
approaching an “a”. We expect that with more training, and editing the hyperparameters, such as
batch size, or the number of hidden layers this model would improve. Additionally, we observe that
NDP qualitatively outperforms NP on a small number and a large number of context points.
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We observe that NPs and NDPs are unable to successfully learn the time series as well as NCDEs.
We record final test MSEs (×10−1) at 4.6± 0.1 for NPs and a slightly lower 3.4± 0.1 for NDPs. We
believe the reason is because handwritten digits do not follow an inherent ODE solution, especially
given the diversity of handwriting styles for the same letter. We conjecture that Neural Controlled
Differential Equations were able to perform well on this dataset due to the control process. Controlled
ODEs follow the equation:

z(T ) = z(t0) +

∫ T

t0

fθ(z(t), t)
dX(t)

dt
dt, z(t0) = h1(x(t0)), x̂(T ) = h2(z(T )) (16)

Where X(t) is the natural cubic spline through the observed points x(t). If the learnt fθ is an identity
operation, then the result returned will be the cubic spline through the observed points. Therefore, a
controlled ODE can learn an identity with a small perturbation, which is easier to learn with the aid
of a control process, rather than learning the entire ODE trajectory.

G.4 Rotating MNIST

In Figure 9, we plot the prediction of different styles at test-time. Observe that the model is able to
detect different styles.

Figure 9: NDP is able to capture different styles in the rotating MNIST dataset.

G.5 Variable Rotating MNIST

Additionally, we introduce a more challenging version of the Rotating MNIST dataset. Samples in
the original task start upright and rotate once over 16 frames (= 360◦s−1) (i.e. constant angular
velocity, zero angular shift). In our adaptation, the angular velocity varies between samples in the
range (360◦ ± 90◦)s−1 and each sample starts at a random initial rotation. As shown in Figure 10,
NDPs are able to extrapolate on the variable velocity MNIST dataset, although such extrapolation
is not evident with the standard rotating MNIST dataset. We hypothesise that this capability is due
to the different angular velocities in the dataset inducing the model to unlearn the relatively trivial
interpolation between frames in favour of learning the underlying dynamics. In contrast, NPs struggle
on this much more challenging domain and are unable to recover the stylistic aberrations of the digits.

extrapolation
T

text

v-NP
v-NDP

Target

Context

NP

NDP

Figure 10: Variable angular velocity and angular shift rotating MNIST extrapolation. NDP is able to
extrapolate beyond the training data range whereas NP cannot. The top row shows the targets (ground
truth).
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