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Abstract

Boltzmann generators approach the sampling problem in many-body physics by
combining a normalizing flow and a statistical reweighting method to generate
samples of a physical system’s equilibrium density. The equilibrium distribution
is usually defined by an energy function and a thermodynamic state, such as a
given temperature. Here we propose temperature-steerable flows (TSF) which are
able to generate a family of probability densities parametrized by a choosable tem-
perature parameter. TSFs can be embedded in a generalized ensemble sampling
framework such as parallel tempering in order to sample a physical system across
thermodynamic states, such as multiple temperatures.

1 Introduction

Sampling equilibrium states of many-body systems such as molecules, materials or spin models is
one of the grand challenges of statistical physics. Equilibrium densities of system states x are often
given in the form

pX(x) ∝ exp(−u(x)), (1)
where u(x) is a reduced (unit-less) energy that combines the system’s potential U(x) (if momenta
are of interest we have the Hamiltonian energy instead) with thermodynamic variables that define
the statistical ensemble. In the canonical ensemble the reduced energy is given by u(x) = U(x)/τ
where the thermal energy τ = kBT is proportional to the temperature T and kB is the Boltzmann
constant. In order to reach all thermodynamic states, we would like to sample a family of densities
parameterized by the thermodynamic control variables – in the canonical ensemble:

pX(x; τ) ∝ exp(−U(x)/τ). (2)

The most common approach to sample densities (1) in physics and chemistry are Markov Chain
Monte Carlo (MCMC) or Molecular Dynamics (MD) – both proceed in steps, making small changes
to x at a time, and guarantee that the target density (1) will be sampled asymptotically but possibly
after a very long or intractable simulation time. Generalized ensemble methods such as parallel
tempering (PT) simulate multiple copies of the system at different temperatures (or other thermody-
namic states) and perform Monte-Carlo exchanges between them [19, 6, 9]. These approaches can
converge faster than direct MCMC/MD, and sample the generalized ensemble (2) directly.
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Figure 1: Schematic figure of the TSF architecture used here. Auxiliary momenta ~q and coordinates
~z are coupled with volume preserving networks where the outputs of the multi-layer perceptron
(MLP) used to generate the scaling variables are normalized. The first layer multiplies the latent
space coordinates ~z with a scalar factor k, which adjusts for difference in entropy between latent
and phase space.

Recently, there has been a lot of interest to train normalizing flows [20, 16, 3, 4, 15, 10] to sample
densities of many-body physics systems such as (1) directly without having to run long, correlated
simulation chains. Normalizing flows transform an easy to sample prior distribution pZ(z), e.g. a
multivariate normal distribution, via a transformation x = f(z) to the output distribution pX(x). If
f(z) is invertible, pX(x) can be computed by the change of variable formula

pX(x) = pZ(z) |det Jf (z)|−1
, (3)

where |det Jf (z)|−1 is the inverse of the Jacobian. Boltzmann Generators (BGs) [14] combine
normalizing flows to minimize the distance between (1) and (3) with a statistical reweighting or
resampling method to generate unbiased samples from (1). This and similar approaches have been
used to sample configurations of molecular and condensed matter systems [14, 22], spin models
[12, 13] and gauge configuration in lattice quantum chromodynamics [1, 2].

In order to address the problem of sampling generalized ensembles such as (2), we here take a first
stab at developing flow architectures that can be steered by thermodynamic variables. Steerable
flows are related to equivariant flows which maintain group transformations such as rotation and
permutation throughout the flow [11, 17, 23]. Specifically, we develop temperature-steerable flows
(TSF) that correctly parametrize the distribution pX by a temperature variable. We evaluate our
model on a test system and Alanine Dipeptide, show that the TSF significantly improves the tem-
perature scaling, is capable of producing samples close to equilibrium at different temperatures, and
can be turned into a multi-temperature BG by using it as a proposal density in a PT framework.

2 Temperature-steerable flows

Temperature scaling Up to a normalization constant, a change to temperature τ ′ of the Boltzmann
distribution corresponds to raising it by the power of κ = τ/τ ′, pτ

′

X(x) ∝ [pτX(x)]
κ
. Using Eq. (3)

we observe that the temperature scaling is exact, if for any two temperatures τ, τ ′

pτ
′

Z (z)
∣∣det Jfτ′ (z)∣∣−1 ∝

[
pτZ(z) |det Jfτ (z)|−1

]κ
. (4)

The proportionality in the prior distribution can be matched by selecting a Gaussian prior pτZ(z) =
N (z|~0, τ), which fulfills pτ

′

Z (z) ∝ [pτZ(z)]
κ. This results in a condition on the Jacobian of

the flow |det Jfτ (z)|κ ∝
∣∣det Jfτ′ (z)∣∣. As a consequence, volume-preserving flow layers, i.e.∣∣det Jfτ′ (z)∣∣ = 1, such as NICE [3] fulfill this condition trivially. However, the condition is also

fulfilled by constant Jacobians, i.e.
∣∣det Jfτ′ (z)∣∣ = const. which we make use of to develop more

expressive TSFs.

An architecture for temperature-steerable flows The recently proposed stochastic normalizing
flows (SNF) [22] can be used to construct TSFs. Here we utilize a type of SNF which is moti-
vated by Hamiltonian Monte Carlo (HMC) and utilizes operations in an augmented space, where
the auxiliary momenta are distributed according to a distribution pA. However, in contrast to the
original HMC method [5], we do not propagate the system by Hamiltonian dynamics, but learn a
(deterministic) flow D that takes this role. This flow shares similarities to other augmented flows,
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such as Hamiltonian flows [7, 21] and Augmented Normalizing Flows (ANFs) [8]. To sample from
the model, i.e. ~x = fτ (~z);~z ∼ pτZ(~z), the flow consists of three consecutive steps

1. Sample auxiliary momenta ~q ∼ pτA(~q), and define the point in phase space ~υ = (~z, ~q)

2. Propagate the point in phase space by the dynamics ~γ = (~x, ~p) = D(~υ)

3. Project onto the configuration variables ~x

With the flow described above we can construct a TSF by choosing pτA(~q) = N (~q|0, τ) and choosing
a dynamics D with a constant Jacobian which satisfies the temperature scaling condition (Eq. 4).
A convenient way of constructing volume preserving dynamics, i.e. |det JD(~υ)| = 1, is obtained
by altering the RNVP network structure [4], such that the product of the outputs of the scaling
layers is equal to unity. This is done by subtracting the mean of the log outputs from each scaling
layer, similar to [18]. In addition to the volume preserving RNVP layers we scale the latent space
coordinates by a trainable scalar, which allows to adjust for entropy difference between the prior and
the target. The resulting Jacobian factor is a constant and, hence, still fulfills the scaling condition.
The flow architecture is shown in Fig. 1.

This architecture can also be viewed as an instance of an ANF, where the augmented prior distri-
bution pτΥ (~υ) = pτZ(~z)p

τ
A(~q) is mapped to the joint output distribution pτΓ (~γ) via the invertible

dynamics D. The joint target distribution is given by µτX(~x)pτA(~p). As the flow fulfills the tem-
perature scaling condition, a temperature change of the prior, i.e. τ → τ ′, will change the output
accordingly. In the case of a factorized output distribution pτΓ (~γ) = pτX (~x) pτA (~p) the marginal dis-
tribution pτX (~x) is scaled correctly as well. This is ensured if the joint target distribution is matched
correctly.

Training As in [14], the TSFs are trained by a combination of a maximum-likelihood (forward
KL) and energy-based (reverse KL) loss L = (1− λ)LML + λLKL, where the mixing parameter
λ is increased from zero during training. The maximum likelihood loss minimizes the negative
log likelihood (nll), which requires samples from a distribution p′Γ(γ) that is similar to the target
distribution

LML = E~γ∼p′Γ(~γ)

[
− log pΥ(D

−1(~γ))− log |det JD−1(~γ)|
]

(5)

As the target energy U(x) is defined by the physical system of interest, we can also rely on energy-
based training where the reverse KL divergence is minimized via the variational free energy

LKL = E~υ∼pΥ(~υ) [U(D(~υ))− log |det JD(~υ)|] (6)

Sampling and latent Monte Carlo One way to generate samples using the TSF is by directly
sampling from the Gaussian prior at the desired temperature and transforming the samples to con-
figuration space. As the TSF is only an approximation to the Boltzmann distribution, these samples
will generally be biased.

In order to ensure that the TSF generates unbiased samples from (2), we use it in a MCMC frame-
work. A proposal ~x′ is generated from configuration ~x by sampling auxiliary momenta ~p ∼ pτA (~p)
to define ~γ = (~x, ~p), then applying the inverse dynamics ~υ = D−1(~γ) followed by a ran-
dom displacement ~υ′ = ~υ + ~ξ, with ~ξ ∼ N (0, σ2), in latent space and then transforming back
into configuration space (~x′, ~p′) = D(~υ′). Accepting such a step with acceptance probability
pτacc ((~x, ~p)→ (~x′, ~p′)) = min

{
1, exp

[
−
(
U(~x′)− U(~x) + ‖~p′‖2 /2− ‖~p‖2 /2

)
/τ
]}

enforces
detailed balance in configuration space and thus ensures convergence to the Boltzmann distribution.

As the TSF is able to generate distributions at several temperatures, we can combine the MCMC
moves with PT [19, 6, 9]. In PT, sampling is performed at a set of temperatures in parallel. Addi-
tionally to TSF-MCMC steps, samples can randomly be exchanged between two randomly chosen
temperatures. This allows the sampler to overcome energy barriers quickly at high temperatures
while still preserving details of the wells at lower temperatures.

3 Experiments

We carry out experiments at two different test models. Firstly, we demonstrate that the TSF drasti-
cally improves the temperature scaling as compared to the original RNVP. In a second experiment
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Figure 2: Results for the multi-dimensional double well system. A: marginal density of the first 5
coordinates of the 20d system. B: comparison of the nll as a function of the temperature between
the TSF and the RNVP network structure in the 5 dimensional case (lower is better). The dashed
line indicates the training temperature T = 1 C: same as B but for the 20 dimensional system.

Figure 3: Results for Alanine Dipeptide (D) in implicit solvent. A, B, E, F: Density of φ, ψ variables
from different methods. A: TSF samples generated at the training temperature of T = 600 K
(ground truth is B). E: Samples generated with the same TSF at T = 300 K to be compared (ground
truth is F). Histograms of the dihedral angle φ are shown in C for T = 600 K and in G for T = 300
K. H: Energy histograms at the different temperatures. D: Alanine Dipeptide molecule

we show that for the Ala2 molecule the TSF is able to generate samples close to the Boltzmann
distribution and that the MCMC scheme results in unbiased samples.

Mixture of multi-dimensional double wells As a toy system that can easily be formulated in
different dimensions, we select a mixture of multi-dimensional double wells which are mixed via
a correlation matrix. The energy of this system is given by U(x) = Udw(A~x), with Udw(~x) =∑d
i aixi + bx2

i + cxi
4. The parameter vector ~a and correlation matrix A are chosen at random.

We study the system at dimensions d = {5, 20} and compare the TSF with a RNVP flow with
comparable numbers of trainable parameters. Fig. 2 left shows the marginal density of the first 5
coordinates of the 20d system. The Boltzmann Generators are trained at T = 1 and then analyzed
by comparing the nll (Eq. 5) of equilibrium samples, which were generated by Gaussian increment
MCMC in combination with PT at 100 temperatures in the range T = 0.1 to T = 10 (Fig. 2
center and right). For the 5d system we observe that both network structures perform equally well
in the close vicinity of the training temperature, however the TSF has a significantly lower nll at
temperatures further away from the ones it was trained on. In the case of the 20d system, the TSF
consistently outperforms the RNVP even at the training temperature. This indicates that the TSF is
a more expressive network structure with stronger temperature scaling.
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Alanine Dipeptide We further test TSF on the Alanine Dipeptide molecule in an implicit solvent
model. For this system we use an invertible coordinate transformation layer and operate the TSF on
a representation of the molecule in terms of distances and angles. As we are specifically interested
in the temperature scaling aspect, we generate sets of samples at temperatures T = {300 K, 600 K}
using MD. Our goal is to use the samples at T = 600 K to train the TSF and then use the TSF
to sample at T = 300 K. The MD set at T = 300 K serves as ground truth for comparison. We
use the TSF to generate samples in configuration space and compare the Ramachandran plots and
distributions of the φ angle (Fig. 3). We observe good agreement at the training temperature (Fig. 3
panels A to C). At T = 300 K (Fig. 3 panels E to G) the TSF still finds the major minima at around
φ ≈ −2, but under-samples the minimum at φ ≈ 1. This deviation from the target distribution is
likely stemming from limited expressivity of the flow. We are able to recover the correct distribution
of φ when using the Monte Carlo scheme in a PT fashion (Fig. 3 C and G). Furthermore, the output
of the TSF closely recovers the distribution of energies (Fig. 3 H) at both temperatures.

4 Discussion

In this work, we derived and constructed temperature-steerable flows (TSF) that correctly scale the
output distribution of a BG with temperature. We showed that this novel type of flow can be used
to train a BG at one temperature and generate distributions at other temperatures. Further progress
could be made by combining samples at different temperatures when collecting training data and
thus improve the quality of the BG. Another application could be the investigation of temperature
dependent observables, e.g. magnetization in spin systems or free energy difference in proteins.

5 Broader impact

Sampling equilibrium samples is important for physics and other fields. Applications range from
development of new materials to drug discovery. A lot of computational resources and energy is
required for these simulations. Enhancing such sampling algorithms with Machine Learning meth-
ods has the potential to increase the efficiency. Allowing to reduce the computational cost and thus
energy consumption significantly. One promising approach to tackle this problem are the frame-
work of Boltzmann Generators (BGs), to which this paper contributes. This paper enables BGs to
generate Boltzmann Distributions at different temperatures. This allows them to be trained at high
temperatures where sampling is comparably cheap and furthermore to be used in enhanced sampling
algorithms such as parallel tempering.

One risk of this method is that enabling and improving sampling methods for which currently no
convergence criterion is known can lead to false claims. In the context of flow bases samplers
ergodicity is not well studied. While broken ergodicity can also be an issue in MD and MCMC, these
are known to be ergodic at least in the asymptotic limit, i.e. the limit of infinitely long simulations.
This needs to be further researched to arrive at criteria that guarantee convergence.
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