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Abstract

Magnetic activity in stars manifests as dark spots on their surfaces that modulate
the brightness observed by telescopes. These light curves contain important infor-
mation on stellar rotation. However, the accurate estimation of rotation periods is
computationally expensive due to scarce ground truth information, noisy data, and
large parameter spaces that lead to degenerate solutions. We harness the power of
deep learning and successfully apply Convolutional Neural Networks to regress
stellar rotation periods from Kepler light curves. Geometry-preserving time-series
to image transformations of the light curves serve as inputs to a ResNet-18 based
architecture which is trained through transfer learning. The McQuillan catalog
of published rotation periods is used as ansatz to ground truth. We benchmark
the performance of our method against a random forest regressor, a 1D CNN, and
the Auto-Correlation Function (ACF) - the current standard to estimate rotation
periods. Despite limiting our input to fewer data points (∼1k), our model yields
more accurate results and runs 350 times faster than ACF runs on the same number
of data points and 10,000 times faster than ACF runs on ∼65k data points. With
only minimal feature engineering our approach has impressive accuracy, motivating
the application of deep learning to regress stellar parameters on an even larger
scale.
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1 Introduction

Figure 1: Spots occur on bil-
lions of stars in Kepler’s FOV.

Magnetic activity forms dark spots on the surface of stars. Through
telescopes, these spots are only visible as slight dips in the brightness
measured over time (light curves). Parameterizing spot properties
(like their number, size, and location) is crucial to understanding
stellar magnetic activity but also very challenging. Spots move on
the stellar surface, and many parameter combinations can lead to
the same 1D signal - a problem known as degeneracy. The easiest
parameter to determine, and one critical to constrain others, is the
stellar rotation period, PRot.

Different methods are used to study rotation in photometric light
curves. One class of methods involves feature-engineering whereby
clever transformations of light curves are used to better represent
the information they contain. These include detecting peaks in
Lomb-Scargle (LS) periodograms (e.g. [14, 16]), Auto-Correlation
Functions (ACFs) (e.g. [10]), and time-frequency analysis such as
wavelet transforms (e.g. [9, 6]). The ACF method in particular has proven extremely effective for
measuring rotation periods. The most comprehensive catalog of rotation periods for the Kepler
dataset utilized the ACF method, finding it more robust to noise, systematics, and evolution of stellar
activity than periodograms [10, 11]. Another class of algorithms rely on data-driven approaches
popular in ML. Neural Networks and Random Forests (RF) have been leveraged to predict if a light
curve will produce a robust rotation period measurement from its Lomb-Scargle periodogram [1].
More recently, [3] used RF to classify rotating and non-rotating stars and trained a second RF to find
the best high-pass filter to retrieve the most probable rotation period.

Here we present a concept study demonstrating that pre-trained Convolutional Neural Networks can
estimate stellar rotation periods from thousands of Kepler light curves, covering a large field of view
(FOV) of the Galaxy (Fig. 1). This new pipeline offers similar or better mean absolute errors (MAE)
to the ACF method, but is orders of magnitudes faster while only requiring a fraction of the data.

2 Methods

2.1 Data

In this work, we use data from the Kepler Mission. The Kepler Space Telescope observed >200k
targets for four years. Here, we use long cadence light curves, i.e. time series data which recorded the
brightness of a target every 30 minutes. The Kepler spacecraft was in an earth-trailing orbit around
the sun, and every three months the spacecraft rotated to maximize the solar panel efficiency. As such,
the data is separated into quarters (Q) of roughly 90 days. The continuous four-year, high precision
photometry enabled precise determination of stellar rotation periods for tens of thousands of stars.
McQuillan et al. produced a catalog of rotation periods using the ACF method applied to continuous
light curves from Q3-Q14, and continuous three quarter segments (Q3-Q5, Q6-Q8, etc.), and reported
rotation periods where there was agreement in period determination. This redundancy gives high
confidence of accuracy to their published catalog.

2.2 Baselines

We establish ACF and Machine Learning (ML) baselines as precursors to the final work. The ACF
method represents the astrophysics standard, and the ML models start from common approaches and
build in complexity.

ACF. To establish comparison on computational cost, time, and accuracy, we use the ACF method to
determine the rotation periods for over 100 thousand Kepler targets. We use all 17 quarters of Kepler
data, encompassing four years of observations, to produce the best possible results. Additionally, we
use the ACF approach on single quarters of data (three months, and 1080 data points) for a direct
performance comparison to our ML approaches (Fig. 3).

Machine Learning Baselines. We first investigated the performance of simple Random Forests and
1D Convolutional Neural Networks (CNNs) on the data. Our model architecture choices ranged
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from a simple two layer CNN to more complicated designs with several convolution, pooling and
activation layers appended to a regression module. In order to ensure robust baselines using these
architectures, we performed extensive hyperparameter sweeps which is detailed in the experiments
section.

Through these baseline experiments, we observed that the regressed rotation periods from each base-
line had high mean absolute error (MAE). Further, the 1D CNN models struggled to converge. This
highlights the challenges of significant degeneracy in the data. Given these results, we transitioned to
2D CNNs by mapping our 1D time series into images.

2.3 RotNet

In recent times, CNNs [8] have been the default building blocks for modern computer vision
applications. Further, models trained on large datasets can be extended to solve new problems via
transfer learning [12]. Given the inherent complexity in our data, and the limited amount of reliable
labels (estimates from McQuillan et. al), we map the light curves into images (detailed in Section
2.3.2) and then harness the power of transfer learning to regress stellar rotation periods.

2.3.1 Overall Pipeline

The overall pipeline, which we call RotNet, is shown in Fig. 2. Given a light curve as input, we
first transform it into a three channel image. Each of these transforms yields an N × N image
channel given a light curve of N time steps. We employ transfer learning by initializing our CNN
with pre-trained weights from the ImageNet dataset [15]. We remove the classification head from
the CNN and instead append a regression block to produce rotation period estimates. Here, we
choose ResNet-18 [18, 7] to act as the backbone feature extractor for the imaged time series signal
and these features are fed into the regression block which consists of fully connected layers with
dropout and ReLU activation functions. The key enabler of our approach is the Time Series-to-Image
transformations for which we explain each of the steps in the next section.

Figure 2: RotNet pipeline: Given a light curve (spanning slow to fast rotators) we apply three image
transforms and stack them as channels. The stacked images are then fed to a CNN feature extractor
which is initialized with pre-trained weights. The features thus obtained enable the regression block
to produce estimates of the desired stellar rotation period Pθ.

2.3.2 Image Transformations

Prior work [17, 4] has successfully demonstrated the use of CNNs on transformed time series data.
We use these studies as inspiration. A vast majority of CNNs use images with three channels as
input. Hence we stack three different transformations to form an image that can be processed by
a CNN. Concretely, we use the Gramian Angular Field, Markov Transition Field, and Recurrence
Plot transforms. Each of these transformations preserve the temporal correlation in the data, while
enabling the CNN to extract rich and meaningful features for regressing properties of the light curve.

The Gramian Angular Field (GAF) is gram matrix representation of the inner product between
each point within the time series [17]. A non-linear function is called to convert the coordinates
into the polar coordinate system. This transformation preserves the temporal geometry and is fairly
robust to noise. The Markov Transition Field (MTF) is another gram matrix representation with
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the Markov transition probabilities preserving the information in the time domain [17] . Finally,
the Recurrence Plot (RP) is constructed by representing the distance between trajectories from the
original time series [4]. Once a simple gram matrix via the euclidean distance between the trajectories
is calculated, a threshold is applied to only take the most influential points.

The transformations were computed using PyTs [5], which is a fast time series library. Although
this increases the computational burden by O(N2) data points in memory, it allows us to leverage
established computer vision architectures to effectively deal with image representations.

3 Experiments

3.1 Data Preparation

We ran ACF on 100 thousand Kepler targets and we sorted the light curves by rotation periods and
selected 18, 472 of the fastest rotating light curves each with 1, 080 time steps. We then split the
data into a training set (70%), test set (20%), and validation set (10%). This resulted in 14, 439 light
curves in the training set, 2, 047 in the validation set, and 4, 186 in the testing set. More importantly,
we ensured that the distribution of rotation periods was the same for all three splits. The light
curves (inputs) and rotation periods (outputs) were zero centered with unit standard deviation. As
seen in figure 3, most of the rotation periods were smaller, so to account for this, we composed a
log-transformation, a quantile transformation and min-max scaling to center the data in the interval
[0, 1]. This particularly helped with training the CNNs.

3.2 Hyperparameters

Random Forest. Using grid search and five fold cross validation, we performed a sweep to determine
the optimal parameters for the model. The search space included variations in the number of
estimators, the maximum number of features to obtain the best split, and the minimum samples
required to split a node.

CNN. Our 1D and 2D CNN architectures were trained using the Adam optimizer and a multi-step
learning rate schedule with drops at 30, 60 and 80 percent of the total epochs and a decay factor
of 0.1. We ran hyper-parameter sweeps using the Weights and Biases tool [2] over a wide range of
parameters including batch size, dropout, learning rate as well as the model architecture (Custom
1D CNNs, ResNet-18, ResNet-50, Vgg-16). In the case of the 2D CNNs, we also evaluated training
the models from randomly initialized weights. However, we found that initializing the models using
pretrained weights significantly accelerated convergence. Both the mean squared error and mean
absolute error were considered as loss functions in the sweeps. We obtained our best results with a
batch size of 16, a dropout of 0.1, an initial learning rate of 0.001 with the 1D CNN and the same
hyperparameters with a pretrained ResNet-18 backbone for the 2D CNN.

4 Results

Figure 3-a shows that our ACF implementation yields results that are consistent with the McQuillan
catalog. These results are obtained using 17 Kepler quarters at a 30 minute cadence (≈ 65k data points
per light curve). This process takes 60 seconds per star on a single CPU core. The computational
cost of ACF can be reduced by reducing the number of data points used, but not without incurring a
significant drop in accuracy. As shown in Figure 3-b, reducing the light-curve to ≈ 1k points is 100x
faster, but results in a significant performance hit. Using the baseline Random Forest model, we were
able to achieve a significant speedup as can be seen in 3-c. However, the fit is qualitatively worse
even though it is quantitatively better than the ACF trained on 1k stars in terms of Mean Absolute
Error (MAE). On the other hand, the trained CNNs performed better in terms of accuracy and speed
than our baseline Random Forest and ACF. Figure 3-d shows the results when using our 1D CNN and
Figure 3-e shows the results of RotNet after transforming the light-curves to images. There are two
clear advantages of using CNNs: 1. Inference is now ≈ 10, 000x faster than the full ACF approach
for both 1D and 2D CNNs. 2. Our proposed method, RotNet, has a similar performance to the full
ACF approach even though it uses only ≈ 1k data points in each light curve, as opposed to ≈ 65k in
the full ACF solution. Figure 3-f (second row) shows the distribution of errors for different period
bins. Our RotNet solution is closer to the McQuillan results than any of our other methods and shows
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Figure 3: Performance of period detection algorithms in comparison to the McQuillan catalog [11].
Top row: 2D histogram of calculated periods for the 3,700 stars in our test set vs. the period calculated
by McQuillan. The histogram uses uniform vertical and horizontal spatial grids with one day intervals.
Each panel states how long does it take to process a stellar lightcurve in a single CPU processor.
It also displays the Mean Absolute Error (MAE) for all stars in the set. Bottom-row: Violin plots
displaying the distribution of residual errors for different 5 degree period bins (each bin is represented
using a white or gray shaded area). Violin plots for different techniques are offset horizontally in
each bin, but are built using the same subset of McQuillan stars.

the tightest error distribution. It clearly outperforms the reduced 1‖ ACF method which struggles to
recover the period of fast rotators (0-5 days) and tends to underestimate slow rotators (30-35 days).
Note that we have limited our analysis to stars with PRot ≤ 30 days due to their high abundance and
signal to noise characteristics.

5 Conclusions / Future Work

Exoplanet hunting missions and surveys (i.e. Kepler and TESS) have already generated Terabytes of
stellar light curves that are a treasure trove of data for understanding exoplanet hosts, stellar rotation
and magnetism. However, traditional algorithms used to estimate stellar properties, like ACF, are
expensive and require long observational baselines. Here we demonstrate that our pipeline (RotNet)
based on a supervised, pre-trained Convolutional Neural Networks is able to estimate stellar rotation
periods with a similar level of accuracy as the full ACF approach. It does so with 65 times less
data points and is 10,000 times faster. Training and deploying CNNs requires the existence of a
ground truth, which we assume to be the period estimates obtained by McQuillan et al. This means
that RotNet is only as good as the method used to determine its training target stellar properties.
Nevertheless, our results demonstrate that neural networks can be used to massively scale methods
that are otherwise expensive and can only be applied to a handful of stars. On its own, RotNet is
not meant to be a substitution for more detailed inference methods of stellar properties. Instead, the
combination of direct methods of inference with supervised machine learning paints a bright future
to fully take advantage of current and future missions that measure the time evolution of stellar light
curves. In the future, we plan to extend this framework to other stellar properties like inclination,
before tackling stellar magnetic parameters.

Broader Impact

There are no ethical or societal consequences of our work except that it allows our Sun, its mag-
netic properties, and space weather to be placed in cosmological context. Our work, however, can
significantly benefit the astronomical community by characterizing the rotation of millions of stars
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in near-future high-cadence sky surveys such as that will be carried out by the Rubin Observatory,
which would not be computationally feasible with forward-modeling. This can then lead to the char-
acterization of the magnetic properties of these stars with a wide range of radii, masses, metallicities,
effective temperatures, and ages.

Currently, there are a few methods by which magnetism on other stars can be probed. Polarized
line emission and absorption (i.e., Doppler-Zeeman imaging) has been used extensively to map the
magnetic field lines on bright stars. Second, high-resolution imaging via optical interferometers,
such as the Center for High Angular Resolution Astronomy (CHARA) [13], are used to spatially
resolve stars and characterize their spots. The disadvantage of these probes is that the sample size is
limited to the nearest and brightest stars, which precludes generalizations of conclusions to arbitrary
stars. Our methodology unifies and extends the currently limited census of star spots by providing a
robust scheme to interpolate known relations in stellar magnetism as well as opening up the potential
to discover new ones. This gives an observational probe to determine spot seasons, latitudinal
distribution of star spots, and spot coverage. It also allows us to study how stellar magnetic activity is
related to stellar properties such as radius, mass, metallicity, effective temperature, and age. In turn,
this characterization leads to a better understanding of stellar dynamo theory.

Stellar rotation is inferred thanks to the existence of star spots. Star spots can rotate with different
angular velocities at different latitudes. Spots that rotate with similar, but distinct angular velocities
can therefore generate beating patterns and cause star spot-induced light curve features to evolve
at long time scales. However, star spots also physically evolve over such time scales by changing
their contrast, shape, or size. Therefore, a well-known degeneracy in this inference problem is that of
distinguishing star spots subject to differential rotation and evolution. Beyond the work presented
here, our research aims to address this question by incorporating physical generative models as well
as exploiting the long observation baseline of the Kepler telescope.

Ideally one would like to construct a machine learning pipeline that can predict the star spot maps
of any star with an arbitrary set of parameters. However, this is currently not possible, because our
training data are constructed using photometric measurements of a particular survey (e.g., Kepler,
TESS), which has an inherent target selection bias. The failure to characterize potential target selection
biases or other biases due to systematic errors in the data would lead to spurious inferences.
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