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ABSTRACT: Machine learning approaches to anomaly detection have recently been shown to significantly extend the (top right numbers), for CWoLa (blue) and SA-CWoLa (orange)

(a) Signal sensitivity (b) Background specificiy search program at the Large Hadron Collider and elsewhere. One of the prototypical examples for these methods is the CWoLA
search for resonant new physics, where a bump hunt can be performed in an invariant mass spectrum; however, methods

Figure 1: Signal/Background specificity . . . . .
/ which follow this example that rely entirely on data are susceptible to sculpting artificial bumps from the dependence of the 1. Split data into SR/SB and train a supervised classifier f(z) to

A graphical representation of searches for new particles in terms of the

background and signal model dependence, in terms of (a) achieving signal machine learning classifier on the invariant mass. We explore two solutions to this challenge by minimally incorporating distinguish between them (see figure 2).

sensttivity and (0) background spectficity. fmage from fef. 15 simulation into the learning, 2. For similar SR/SB, such a tagger will learn instead to tag
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