
Exact Inference on Hierarchical Clustering in
Particle Physics and Cancer Genomics

Craig S. Greenberg∗,1,2, Sebastian Macaluso∗,3, Nicholas Monath1, Patrick Flaherty1,
Kyle Cranmer3, Andrew McGregor1, Andrew McCallum1

1 University of Massachusetts Amherst
2National Institute of Standards and Technology

3New York University
csgreenberg@cs.umass.edu

seb.macaluso@nyu.edu

Abstract

Hierarchical clustering is a fundamental task often used to discover meaningful
structures in data. We present dynamic-programming algorithms for exact inference,
i.e we can compute the partition function and maximum likelihood hierarchical
clustering. Our algorithms scale in time and space proportional to the powerset
of N elements which makes it significantly faster than considering every possi-
ble hierarchy ((2N − 3)!!). We show applications in particle physics and cancer
genomics, where our algorithms outperform greedy and beam search baselines.

1 Introduction

Hierarchical clustering is often used to discover meaningful structures, such as phylogenetic trees
of organisms Kraskov et al. [2005], taxonomies of concepts Cimiano and Staab [2005], subtypes of
cancer Sørlie et al. [2001], and jets in particle physics Cacciari et al. [2008]. Among the reasons that
hierarchical clustering has been found to be broadly useful is that it forms a natural data representation
of data generated by a Markov tree, i.e., a tree-shaped model where the state variables are dependent
only on their parent or children.

Figure 1: Schematic representation of a hier-
archical clustering. H denotes the latent state
and X the dataset of leaves.

We define a hierarchical clustering as a recursive splitting
of a dataset of elements, X = {xi}Ni=1 into subsets until
reaching singletons, e.g. leaves of a binary tree. This can
equivalently be viewed as starting with the set of single-
tons and repeatedly taking the union of sets until reaching
the entire dataset. We show a schematic representation in
Figure 1, where we identify each xi with a leaf of the tree
and the latent state as H.

We consider an energy-based probabilistic model for hi-
erarchical clustering. We provide a general (and flexible)
definition of this model and implementations in particle physics and cancer genomics. Our model is
based on measuring the compatibility of each pair of sibling nodes, described by a potential function
ψ : 2X × 2X → R+. We also denote the potential function for a hierarchical clustering H and dataset
X as φ(X|H). Then, the probability of H for the dataset X , P (H|X), is equal to the unnormalized
potential of H normalized by the partition function, Z(X):
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Exhaustive Computation of the 
Partition Function - O((2N-3)!!)

Computation using Trellis  - O(3N) << O((2N-3)!!)
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Z({a, b, c, d}) =  ({a, b, c}, {d}) · Z({a, b, c}) · Z({d}) +  ({a, b, d}, {c}) · Z({a, b, d}) · Z({c})

+  ({a, c, d}, {b}) · Z({a, c, d}) · Z({b}) +  ({b, c, d}, {a}) · Z({b, c, d}) · Z({a})

+  ({a, b}, {c, d}) · Z({a, b}) · Z({c, d}) +  ({a, c}, {b, d}) · Z({a, c}) · Z({b, d})

+  ({a, d}, {b, c}) · Z({a, d}) · Z({b, c})

Z({a, b, c}) =  ({a, b}, {c}) · Z({a, b}) · Z({c})

+  ({a, c}, {b}) · Z({a, c}) · Z({b})

+  ({b, c}, {a}) · Z({b, c}) · Z({a})

Z({a, b, c, d}) =  ({a, b, c}, {d}) ·  ({a, b}, {c}) ·  ({a}, {b})

+  ({a, b, c}, {d}) ·  ({a, c}, {b}) ·  ({a}, {c})

+  ({a, b, c}, {d}) ·  ({b, c}, {a}) ·  ({b}, {c})

+  ({a, c, d}, {b}) ·  ({a, c}, {d}) ·  ({a}, {c})

+  ({a, c, d}, {b}) ·  ({a, d}, {c}) ·  ({a}, {d})

+  ({a, c, d}, {b}) ·  ({c, d}, {a}) ·  ({c}, {d})

+  ({a, b, d}, {c}) ·  ({a, b}, {d}) ·  ({a}, {b})

+  ({a, b, d}, {c}) ·  ({a, d}, {b}) ·  ({a}, {d})

+  ({a, b, d}, {c}) ·  ({b, d}, {a}) ·  ({b}, {d})

+  ({b, c, d}, {a}) ·  ({b, c}, {d}) ·  ({b}, {c})

+  ({b, c, d}, {a}) ·  ({b, d}, {c}) ·  ({b}, {d})

+  ({b, c, d}, {a}) ·  ({c, d}, {d}) ·  ({c}, {d})

+  ({a, b}, {c, d}) ·  ({a}, {b}) ·  ({c}, {d})

+  ({a, c}, {b, d}) ·  ({a}, {c}) ·  ({b}, {d})

+  ({a, d}, {b, c}) ·  ({a}, {d}) ·  ({b}, {c})

Figure 2: Computing the partition function for the dataset {a, b, c, d}. Left: exhaustive computation, con-
sisting of the summation of (2 · 4− 3)!! = 15 energy equations. Right: computation using the trellis. The sum
for the partition function is over 24−1 − 1 = 7 equations, each making use of a memoized Z value. Colors
indicate corresponding computations over siblings in the trellis.

P (H|X) =
φ(X|H)

Z(X)
with φ(X|H) =

∏
XL,XR∈siblings(H)

ψ(XL, XR) (1)

where the partition function Z(X) is given by:

Z(X) =
∑

H∈H(X)

φ(X|H). (2)

andH(X) gives all binary hierarchical clusterings of the elements X . We refer to this as an energy-
based model since often it is the case that ψ(·, ·) is defined by the unnormalized Gibbs distribution,
as ψ(XL, XR) = exp(−βE(XL, XR)), where β is the inverse temperature and E(·, ·) is the energy.

Next, we define MAP hierarchy as the maximum likelihood hierarchical clustering given a dataset X .
Exactly performing inference on the MAP hierarchy and finding the partition function by enumer-
ating all hierarchical clusterings over N elements is exceptionally difficult because the number of
hierarchies grows extremely rapidly, namely (2N − 3)!! (see Callan [2009], Dale and Moon [1993]
for more details and proof). To overcome the computational burden, we introduce a cluster trellis data
structure for hierarchical clustering (see Greenberg et al. [2018] for the equivalent algorithm over flat
clustering). Our algorithms compute these quantities in the O(3N ) time, without having to iterate
over each possible hierarchy. While still exponential, this is feasible in regimes where enumerating all
possible trees would be infeasible, and is to our knowledge the fastest exact MAP/partition function
result, making practical exact inference for datasets on the order of 20 points (~3× 109 operations vs
~1022 trees) or fewer. Our proposed approach is inspired by classic uses of dynamic programming
in inference, such as the Sum-Product Algorithm and Viterbi. To the best of our knowledge these
algorithms and related ones (e.g. belief propagation, message passing, etc) cannot be directly applied
to the aforementioned probabilistic model for hierarchical clustering because that would require to
express the distribution over hierarchies as a graphical model.
Contributions of this paper. We achieve exact, not approximate, solutions to compute the parti-
tion function Z(X) and MAP inference, i.e. find the maximum likelihood tree structure.

2 Hierarchical Cluster Trellis Algorithm
Computing the Partition Function. Given a dataset of elements, X = {xi}Ni=1, the partition
function, Z(X), for the set of hierarchical clusterings over X ,H(X), is given by Equation 2. The
partition function for every node in the trellis is computed in order (in a bottom-up approach),
memoizing the partial value at each node. A visualization comparing the trellis algorithm to the brute
force method for a dataset of four elements is shown in Figure 2. To implement the trellis, we need to
re-write Equation 2 in the corresponding recursive way as follows,
Proposition 1. For any x ∈ X , the hierarchical partition function can be written recursively, as
Z(X) =

∑
H∈H(X) φ(H) =

∑
Xi∈Xx

ψ(Xi, X \Xi) · Z(Xi) · Z(X \Xi) where Xx is the set of all
clusters containing the element x (omitting X), i.e,. Xx = {Xj : Xj ∈ 2X \X ∧ x ∈ Xj}.

Computing the Maximum Likelihood Hierarchical Clustering. The MAP hierarchy for dataset
X , H?(X), is H?(X) = argmaxH∈H(X) P (H|X) = argmaxH∈H(X) φ(H). As in the partition function,
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we can use a recursive memoized technique. Each node will store a value for the MAP hierarchy,
denoted φ(H?(X)) and a backpointer Ξ(H?(X)). Specifically,
Proposition 2. For any x ∈ X , let Xx = {Xj : Xj ∈ 2X \ X ∧ x ∈ Xj}, then φ(H?(X)) =
maxXi∈Xx

ψ(Xi, X \Xi) · φ(H?(Xi)) · φ(H?(X\Xi)).

3 Experiments
3.1 Jet Physics
Background Detectors at the Large Hadron Collider (LHC) at CERN measure the energy (and
momentum) of particles produced from proton-proton collisions. The final-state particles that hit the
detector are stable and originated by a showering process where an initial (unstable) particle goes
through successive binary splittings until reaching the final-state ones, represented by the leaves in a
binary tree. Typically, a collimated set of final-state particles are clustered together as a jet. These
leaves are observed while the latent showering process, described by quantum chromodynamics
(QCD), is not. As a result, there are several latent trees that correspond to a set of leaves. This
representation, first suggested in Louppe et al. [2019], connects jets physics with natural language
processing (NLP) and biology.

Currently, generative models in full physics simulations for the showering process that produces a set
of leaves do not admit a tractable density (they are implicit models). A main problem in data analyses
in collider physics deals with estimating this latent showering process. Thus, an open area of research
aims to unify generation and inference, which typically requires extracting additional information
from the simulator; e.g estimate the clustering history of a set of leaves. At the moment, clustering
algorithms implemented in data analyses are greedy and based on heuristics.

At present, it is very hard to access the joint likelihood in state-of-the-art parton shower generators
in full physics simulations. Also, typical implementations of parton showers involve sampling
procedures that destroy the analytic control of the joint likelihood. Thus, to aid in machine learning
research for jet physics, a python package for a toy generative model of a parton shower, called
Ginkgo, was introduced in Cranmer et al. [2019b]. Ginkgo has a tractable joint likelihood, and is as
simple and easy to describe as possible but at the same time captures essential ingredients of parton
shower generators in full physics simulations. Within the analogy between jets and NLP, Ginkgo can
be thought of as ground-truth parse trees with a known language model.

Probabilistic Model The potential of a hierarchy is identified with the product of the likelihoods
of all the 1→ 2 splittings of a parent cluster into two child clusters in the binary tree. Each cluster,
X , corresponds to a particle with an energy-momentum vector x = (E ∈ R+, ~p ∈ R3) and squared
mass t(x) = E2 − |~p|2. A parent’s energy-momentum vector is obtained from adding its children,
i.e., xP = xL + xR. We study a toy model for jet physics, where for each pair of parent and left
(right) child cluster with masses

√
tP and

√
tL (
√
tR) respectively, the likelihood function is,

ψ(XL, XR) = f(t(xL)|tP , λ) · f(t(xR)|tP , λ) with f(t|tP , λ) =
1

1− e−λ
λ

tP
e
−λ t

tP (3)

where the first term in f(t|tP , λ) is a normalization factor associated to the constraint that t < tP .

Data and Methods The ground truth hierarchical clusterings of our dataset are generated with
the toy generative model for jets Ginkgo, see Cranmer et al. [2019a] for more details. This is a
simulation model for cascades of particle physics decays in jet physics. This model implements a
recursive algorithm to generate a binary tree, where each node is represented by a four dimensional
energy-momentum vector and the leaves are the jet constituents. We compare the trellis results with
greedy and beam search baselines. Greedy simply chooses the pairing of nodes that locally maximizes
the likelihood at each step, whereas beam search maximizes the likelihood of multiple steps before
choosing the latent path. The current implementation only takes into account one more step ahead,
with a beam size given by N/2(N − 1), with N the number of jet constituents to cluster. Also,
when two or more clusterings had an identical likelihood value, only one of them was kept in the
beam, to avoid counting multiple times the different orderings of the same clustering (see Boyles
and Welling [2012] for details about the different orderings of the internal nodes of the tree). This
approach significantly improved the performance of beam search.

Results We show results for the implementation of the trellis algorithm on a jet physics dataset of
5000 Ginkgo Cranmer et al. [2019b] jets with a number of leaves between 5 and 10, and we refer to it
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Figure 3: Jet Physics. Scatter plot of the partition
function Z vs. the trellis MAP ` for the Ginkgo510
dataset. There appears to be a correlation between
Z and the MAP.

MAP Tree via TrellisApproximate Tree via Greedy

Figure 4: Cancer Genomics. Comparison of trees from
greedy (left) and exact MAP clustering using the trellis
(right) on the subsampled pam50 data set. The colors
indicate subtypes of breast cancer (grey if unknown).

as Ginkgo510. We start by comparing in Table 1 the mean difference among the MAP values for the
hierarchies obtained with the trellis, beam search and greedy algorithms. We see that the likelihood
of the trees increase from greedy to beam search to the trellis one, as expected. Next, in Figure 3 we
show a plot of the partition function versus MAP for each set of leaves. It is interesting to note that
there seems to be a correlation between Z and the Trellis MAP hierarchy. We want to emphasize that
the trellis enables the calculation of the partition function.

3.2 Cancer Genomics

Beam Search Greedy

Trellis 0.4 ± 0.5 1.5 ± 1.1
Beam Search 1.1 ± 1.1

Table 1: Mean and standard deviation for the
difference in log likelihood for the MAP tree found
by algorithms indicated by the row and column
headings on the Ginkgo510 dataset.

Background In cancer genomics, we want to
model subtypes of cancer, which can help determine
prognosis and treatment plans. Hierarchical cluster-
ing is a common clustering approach for gene ex-
pression data [Sørlie et al., 2001]. However, standard
hierarchical clustering uses a greedy agglomerative
or divisive heuristic to build a tree. It is not uncom-
mon to have a need for clustering a small number of
samples in cancer genomics studies. An analysis of
data available from https://clinicaltrials.gov shows that the median sample size for 7,412 completed
phase I clinical trials involving cancer is only 30.

Probabilistic Model In this case we are given a dataset of vectors indicating the level of gene
expressions which are endowed with pairwise affinities that are both positive and negative. We define
the energy of a pair of sibling nodes in the tree to be the sum of the positive edges from elements in
one child to elements in the other one, minus the negative edges between two elements in the same
child.

ψ(Xi, Xj) = exp(−βE(Xi, Xj)) (4)

E(Xi, Xj) =
∑

xi,xj∈Xi×Xj

wijI[wij > 0]−
∑

xi,xj∈Xi×Xi,
xi 6=xj

wijI[wij < 0]−
∑

xi,xj∈Xj×Xj ,
xi 6=xj

wijI[wij < 0] (5)

where wij is the affinity between xi and xj . This energy is the correlation clustering objective Bansal
et al. [2004].

Data and Methods We compare a greedy agglomerative clustering to our exact MAP tree using the
Prediction Analysis of Microarray 50 (pam50) gene expression data set. The pam50 dataset (n = 232,
d = 50) is available from the UNC MicroArray Database [University of North Carolina, 2020]. It has
intrinsic subtype annotations for 139 of the 232 samples. Missing data values (2.65%) were filled
in with zeros. We drew a stratified sample of the total data set with two samples from each known
intrinsic subtype and two samples from the unknown group.

Results Figure 4 displays the greedy hierarchical clustering tree and the MAP tree with transformed
weights for the twelve samples selected from the pam50 dataset. The main difference between these
trees is in the split of the subtree including LumB, HER2, and unknown samples. The greedy method
splits HER2 from LumB and unknown, while the MAP hierarchy shows a different topology for this
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subtree. For the MAP solution, we note that the subtree rooted at {7, 8, 9, 10, 11, 12} is consistent.
All of the correlation coefficients among this cluster are positive, so the optimal action is to split off
the item with the smallest (positive) correlation coefficient.

4 Conclusion
This paper describes a data structure and dynamic-programming algorithm to exactly compute the
partition function and MAP hierarchy over all hierarchical clusterings given a dataset. Our method
improves upon the computation cost of brute-force methods from (2N − 3)!! to sub-quadratic in the
substantially smaller powerset of N . We demonstrate that our methods outperform current baselines
on jet physics and cancer genomics datasets.

5 Broader Impact

Hierarchical clustering is a fundamental task that is used in a wide range of domains including
phylogenetics, physics, and information sciences. Therefore advances in hierarchical clustering have
the potential for broad impact. Our work is particularly relevant in situations where one would
like to consider many such clusterings weighted by a domain-motivated energy function. Providing
a computationally efficient means to consider all such clusterings enables the the treatment of
uncertainty and other probabilistic concepts, which can aid in the responsible use of such clusterings
for down-stream tasks.

Unlike approximate inference methods, our exact method depends only on the energy based model and
not the inference method. This provides the practitioner the ability to analyze and better understand
the energy-based model independent of approximate inference considerations. It also carries with it
the responsibility of the practitioner to design energy-based models that account for potential impacts
of the particular application.

In particular, the implementation of our algorithm in the context of jet physics could improve analyses
of data from the Large Hadron Collider at CERN. The algorithm can remove computational bottle
necks in various approaches to unify the generative models and inference tasks encountered there. It
also has the potential to speed up state-of-the-art simulators used in particle physics. However, there
are remaining challenges to implement our algorithm on the more complex models used in those
physics simulators.

In the genomics case, hierarchical clustering is a ubiquitous tool in the analysis of gene expression
data and used to better understand diseases such as cancer and neurodegenerative disorders. However,
algorithms for finding a hierarchical clustering are greedy and may not find the optimal tree; thus
data items may be misclustered.

In medical genetic association studies, such as the one present in Section 4, the data items in
hierarchical clustering are samples from real people who have a life-threatening disease. In modern
precision medicine, targeted therapeutics are allocated based on a connection between a sample’s
genetic profile and a targeted therapeutic. Therefore, correctly and exactly clustering samples means
that an individual is allocated to the correct group and can mean the difference between a person
receiving a life-saving treatment and not.

It is important to acknowledge the role of an algorithm such as hierarchical clustering in the allocation
of treatments to individuals on the basis of a genetic profile. We should think about how clustering
can help advanced medical treatments to be allocated fairly and how the results of the algorithm
can drive the development of targeted therapeutics. Even if they are accruing benefits in terms of
improved lifespan and quality of life to individuals, we should ask ourselves if the allocations of
resources is increasing inequality in society.
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