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Abstract

Intermolecular and long-range interactions are central to phenomena as diverse
as gene regulation, topological states of quantum materials, electrolyte transport
in batteries, and the universal solvation properties of water. We present a set
of challenge problems 1 for preserving intermolecular interactions and structural
motifs in machine-learning approaches to chemical problems, through the use of a
recently published dataset of 4.95 million water clusters held together by hydrogen
bonding interactions and resulting in longer range structural patterns. The dataset
provides spatial coordinates as well as two types of graph representations, to
accommodate a variety of machine-learning practices.

1 Introduction

The application of machine-learning (ML) techniques such as supervised learning and generative
models in chemistry is an active research area. ML-driven prediction of chemical properties and
generation of molecular structures with tailored properties have emerged as attractive alternatives
to expensive computational methods [20, 24, 23, 32, 31, 7, 14, 16, 22]. Though increasingly used,
graph representations of molecules often do not explicitly include non-covalent interactions such
as hydrogen bonding, which poses difficulties when examining systems with intermolecular and/or
long-range interactions [10]. To facilitate the development of such methods, we discuss a set of
challenge problems and suggest an approach based on a recently published database of low-energy
water cluster minima lying within 5 kcal/mol from the putative minimum of each cluster size [17].

Scientific motivation: A water cluster is a discrete hydrogen bonded network of water molecules.
While most interactions are short-range (i.e., between neighboring molecules) [19], there also exist
substantial (~20%) many-body, longer-range interactions (i.e., with next-nearest and more distant
neighbors) [30]. Understanding many-body and long-range hydrogen bonding interactions is key to
answering long-standing scientific questions such as the macroscopic properties of liquid water, ice,
and aqueous systems (e.g., heat capacity, density, dielectric constant, compressibility) [13]. These
interactions are responsible for the bulk and interfacial properties of liquid water and ice, as well
as solvation processes, and are key to the realization of diverse applications, from drug delivery to
protein folding and the design of quantum materials and novel electrolytes for batteries [15, 28, 9].

1https://exalearn.github.io/hydronet
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Figure 1: Data model: geometries provided as spa-
tial coordinates. In the graph representation nodes
are atoms (Atomic) or water molecules (Coarse)
and edges are covalent and/or hydrogen bonds.

HydroNet summary: The dataset of 4.95 mil-
lion water cluster minima is the largest collec-
tion of water cluster minima reported to date
[17]. Originally created to advance the devel-
opment of interaction potentials in chemical
physics, the dataset is composed of clusters of
isomers differing in the underlying hydrogen
bonding network. Each cluster is described by
its potential energy, Cartesian coordinates of
each atom, and two graph-based representations
of their bonding arrangement (Fig. 1): an atomic
interaction graph that captures both intramolecular and intermolecular bonding patterns and a coarse
graph that captures only the intermolecular structure of the cluster.

ML tasks on the dataset: 1) Molecular Property Prediction: given a water cluster with specified
spatial coordinate information or bonding structure, predict its energy. 2) Molecule Generation: given
N water molecules, generate candidate structures that conform to structural measures of low-energy
configurations described in the key challenges below.

Key challenges: A defining feature of water clusters is that numerous dissimilar structures can
have quite similar energies. In addition, for a given set of spatial orientations of oxygen atoms in
the cluster (oxygen network), there exist numerous hydrogen bonding networks (Coarse graphs)
depending on the arrangement of the hydrogen atoms, which form hydrogen bonds according to
the Bernal–Fowler rules [3]. The structural properties of low-energy hydrogen bonding networks –
characterized by graph-theoretical measures such as degree distribution, shortest path length, and
distribution of polygons (Fig. 2) – vary systematically with cluster size [4]. A generative method that
produces a water cluster network should be mindful of these properties, as clusters far outside the
distributions are likely to be much higher in energy and therefore of less interest.

Figure 2: Graph-based measures capturing intermolecular interactions and structural motifs in water
cluster networks. Clear patterns such as the average number of neighbors (left), the shortest path
between two water molecules (middle), and the predominance of pentamer and hexamer polygons
over tetramer polygons (right) emerge as the cluster size increases [4].

2 Dataset Description

The potential energy of each cluster was obtained using the ab initio-based Thole-type, flexible,
polarizable interaction potential for water (TTM2.1-F) [6, 8]. Clusters were generated with the
Monte Carlo Temperature Basin Paving (MCTBP) sampling method to produce a dense sampling
of low-energy water clusters containing 3–30 water molecules per cluster [17]. The water cluster
minima dataset [2] is represented in the three formats shown in Fig. 1, each as both line-delimited
JavaScript Object Notation (JSON) and Tensorflow Protobufs. Table 1 lists the information available
for each sample. The records are separated into predefined train (80%), validation (10%), and test
sets (10%), where clusters are maintained in the same subset for each data format. We also provide
code to compute graph descriptors for structural motif tracking [1].

3 Machine-Learning Tasks

We introduce the defined property prediction and generative modeling tasks on the water cluster
dataset and provide details on baseline implementations for the first task.
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