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Abstract

We present a d-dimensional test statistic inspired directly by the Kolmogorov–
Smirnov (KS) test statistic and Press’ extension of the KS test to two dimensions.
We call this the ddKS statistic. To preclude the high computational cost associated
with working in higher dimensions, we present an implementation using tensor
primitives. This allows parallel computation on CPU or GPU. We explore the
behavior of the test statistic in comparing two three-dimensional samples, and use
a standard statistical method - the permutation method - to explore its significance.
We show that, while the Kullback–Leibler divergence is a good choice for general
distribution comparison, ddKS has properties that make it more desirable for
surrogate model training and validation than Kullback–Leibler divergence.

Diverse fields of research, especially the physical sciences and studies including surrogate mod-
eling and normalizing flows, require the comparison of high-dimensional distributions. In many
cases, analysts of these distributions revert to using one dimensional comparison tools, such as the
Kolmogorov–Smirnov test, simple formulation of the Earth Mover’s Distance, or even the mean
integrated squared error between histograms. These one-dimensional comparisons suffer from the
inability to identify differences in the covariances encoded by each distribution. Therefore, efficient
(both statistically and computationally) comparisons between high-dimensional distributions are
essential to advancing the use of machine learning and statistical analysis in the physical sciences.
We present one such technique.

One of the most used, and arguably most powerful, two-sample tests is that proposed by Kolmogorov
and tabulated by Smirnov, the so-called Kolmogorov–Smirnov (KS) test (1; 2). This test is widely
used to compare two samples to determine whether they come from the same one-dimensional
distribution. It does so by creating a test statistic, which is the maximum difference between the
cumulative density function of two samples. The significance can then be easily calculated from
that test statistic, regardless of whether either sample came from a well-defined distribution or not.
This test has several important properties for machine learning, including its fast computation and
ability to test non-parametric samples. However, it comes with one major drawback: that it is only
applicable in one dimension, whereas many problems in data science cannot be compressed to one
dimension without loss of information.

Several authors, mostly notably Press et al. (3), have defined similar tests in higher dimensions.
The difficulty in extension to many dimensions is the ambiguity in the cumulative density function
for a many dimensional distribution. Press et al. define a test statistic in two dimensions using
the class membership in each of the four quadrants surrounding each test point. The maximum of
the differences between membership vectors becomes a test statistic very similar to that in the KS
test, however the same properties for calculating the significance are not retained. Press’ test is of
polynomial time complexity, and perhaps due to this, has not seen wide acceptance (or possibly
awareness) in the data science community.
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We present a d-dimensional KS test, inspired directly by Press’ methodology of extension, but we
present two novel changes. Firstly, we present a tensor-based calculation of the statistic, which
reduces the computational complexity for small sample sizes. Secondly, we use the permutation
method to define significance for our examples, and illustrate how it could be used for practicing data
scientists with our test statistic.

1 The d-dimensional Kolmogorov–Smirnov test statistic

We begin with two samples (a predicted, Xp, and true, Xt, sample) of N points, each point having d
dimensions. We seek to compare the cumulative density functions (CDF) between these samples. The
construction of a CDF is ambiguous in more than one dimension, however an often used surrogate
is the membership in hyperspace regions partitioned at a given test point. In one dimension, this is
equivalent to choosing a test point, and measuring two numbers: counting membership greater than
and less than the given test point. This concept generalizes to many dimensions by using each test
point as an origin to delineate regions in hyperspace and forming a 2d membership vector whose
components correspond to the number of points in each region. The ddKS distance using points
from Xp to partition between the two samples is designated Dp. Let xi ∈ Xp and V p

j (xi), V
t
j (xi)

be the jth component of the membership vectors for the predicted and true samples generated by
the partition of space due to the point xi. The ddKS divergence between Xp and Xt using Xp is the
largest element of the difference of the two membership vectors:

Dp = max
i,j

|V t
j (xi)− V p

j (xi)| (1)

Where the subscript p indicates use of the predicted dataset as the partitioning points; a subscript
t indicates use of the true dataset as the partitioning points. The ddKS test statistic, D, is then the
average of Dp and Dt.

The most straightforward implementation of ddKS can be constructed using loop-based logic. For
each point in each sample, the membership of the hyperspace regions using that point as a partition is
counted. As described above, we evaluate the region membership of both, using predicted and true
samples as partitioning points, and average the maximum differences of their membership vectors.

The naive loop-based implementation has high computational cost, on the order of O
(
2dN2

)
for all

N . Because of this, we have developed a tensor-based implementation which utilizes pytorch’s (4)
implicit parallelization on CPU or GPU. The computational complexity of the tensor form of ddKS is
O
(
2d
)

for small N , with memory complexity O
(
N2

)
. We implemented this tensor-based method

with pytorch, enabling use of modern GPU hardware.

1.1 Monte Carlo

We illustrate the utility of ddKS on two non-parametric distributions. In many physics applications,
the correlation between two or more variables is of interest, more than simply the distribution of
either variable independently. This is true in coincidence spectroscopy, particle transport, and many
other applications. We create two pathological distributions: one to illustrate the problem with using
one dimensional test statistics, the other to demonstrate comparison of signals in varied background -
an oft-encountered detection physics problem.

As an illustration of ddKS’s utility on problems in modern physical sciences, we present a non-
parametric, toy problem germane to modern high energy physics. We simulate a Cherenkov ring
detector made of quartz of height 20cm. The bottom surface of the quartz medium is an ideal detection
plane, and detections are recorded when an optical photon passes the surface with perfect spatial and
timing resolution. We simulate a Cherenkov cone with the charged particle traveling directly down
the z axis, the center of the detection plane. We also simulate a uniform background: optical photons
are emitted isotropically from the top plane of the cylinder, uniformly in time. As shown in Figure 1,
the one-dimensional histograms of the background versus the Cherenkov signal are identical (shown
by the silver a copper hatched regions overlapping). Clearly, the one-dimensional KS test would
not reject the null hypothesis, and this signal would not be distinguishable from the background.
However, when looking at the distributions in three dimensions, as shown on the three-dimensional
scatter plot, there is a clear difference in the distributions of the Cherenkov cone and background.

We also generate another dataset, where photons are generated and detected as before, however this
time in the presence of a volumetric radiological contamination. Background photons are emitted

2



−2 0 2

Location in dimension x (x) [cm]

0.0

0.5

D
en

si
ty

plane cone

−2 0 2

Location in dimension y (y) [cm]

0.0

0.5

D
en

si
ty

902 903 904

Time (t) [ps]

0.0

0.2

0.4

D
en

si
ty

Figure 1: Dataset constructed mimicking photon emission during Cherenkov process. Histograms of
detection position and time (silver and copper hatched regions) overlap almost exactly.
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Figure 2: Dataset constructed mimicking photon emission during Cherenkov process with a volu-
metric background. Histograms of detection position and time (silver and copper hatched regions)
overlap closely.

isotropically, uniformly distributed throughout a large quartz volume. A comparison between two
different charged particles (with properties such that ϕ = 15◦ and 20◦) in the presence of the same
background is then attempted. As shown in Figure 2, the one dimensional histograms of the two
different cones overlap closely. In the presence of the broad background, a very fine binned histogram
(and therefore many samples) is necessary to disambiguate the two distributions.

The examples we present have been chosen specifically to illustrate issues with single dimensional
distribution comparisons in modern particle physics; however they illustrate a fact that is important
for both simulation validation and generative modeling. Correctly modeling and accounting for the
correlations between variables is essential in real world physics. In generative modeling, it is even
more important: a generative model could learn an “easier” distribution and one-dimensional test
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(a) P-Value versus number of points for KL, 1d
KS, ddKS tests on the comparison between a
Cherenkov cone and a volume source. Each permu-
tation test was performed using 100 permutations,
and trials were repeated 25 times.
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(b) P-Value versus number of points for KL, 1d
KS, ddKS tests on the comparison between two
Cherenkov cones with θ of 15◦ and 20◦ in a wide
background of volumetric photon emissions. Each
permutation test was performed using 100 permu-
tations, and trials were repeated 25 times.

Figure 3: Efficiency metrics for different statistical tests.

statistics would indicate the generative model had larger skill than it truly had. ddKS provides a better
interface for doing this than one-dimensional tests.

2 Comparison to other test statistics

Because of the permutation test, we can use any distance or divergence as a test statistic. To show
ddKS’s utility for physical sciences, we compare it to two other test statistics: the oft-used Kullback–
Leibler (KL) divergence, and against a combination of one-dimensional KS tests. We calculate the
KS test statistic on each dimension individually, summing those to create a pseudo-multi-dimensional
test statistic. We indicate this as ks-1d on figures. We also calculate the diagonal distance of each
point in each pairwise dimension using the l2 norm, subsequently summing each dimension’s KS test
statistic as above. We indicate this as ks-diag on figures. We calculate the KL divergence between
an estimated probability density function of the two distributions. We use a histogram using Scott’s (5)
rule, sizing the number of bins per dimension proportional to N

d
d+2 , to estimate probability density.

We indicate this as kldiv-hist on figures. Finally, we calculate a lower resolution probability
density using only 3 bins in each dimension, subsequently calculating the KL divergence as above.
We indicate this as kldiv-hist25 on figures. The label -cuda indicates that computations were
performed on a CUDA-enabled GPU, which decreases wall-time for computation without changing
the value or significance of the test statistic.

Shown in Figure 3a, we can see the utility of ddKS compared to other metrics. For the dataset
with cylindrical geometry, ddKS variants reject the null hypothesis to α = 0.05 by 5 points per
sample, whereas KL divergence variants reject the same null hypothesis by 15-20 points per sample.
One-dimensional test statistics require > 20 points per sample to reject the test statistic.

Figure 3b shows the statistical efficiency of all metrics for the background included dataset. ddKS
again performs well, rejecting the null hypothesis at around 100 points per sample, with KL divergence
rejecting the null hypothesis by 125 points per sample. Both accelerated computation methods (ddKS
with subsampling and KL divergence (∼25 bins) have a difficult time consistently rejecting the null
hypothesis.

2.1 Time Complexity

Compared to one-dimensional test statistics, multidimensional test statistics incur a high computa-
tional cost. Illustrated on Figure 4, both KL divergence and ddKS are O

(
N2

)
at high N . However,

the implementation using tensor primitives and the implicit parallelization of modern matrix math
libraries (pytorch in this case) make all test statistics O (1) for low N , making them possible to
calculate continuously in a machine learning context. Loop-based implementations (not shown on
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Figure 4: Time to evaluate versus number of points for metrics considered. Time is recorded for
permutation tests using 100 permutations, therefore the number to evaluate the test statistic once is
≤ 100× that recorded on this chart. Estimated time complexities as N → ∞ are printed to the right
side of each line.
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Figure 5: Time complexity and significance with increasing dimensions for ddKS and KL divergence
using Scott’s rules for constructing the histogram. Each permutation test was performed with 20
permutations, and each trial was performed 10 times. The green region indicates regions where H0

could be rejected to α = 0.05.

Figure 4) exhibit the same time complexity for all N , so while sometimes accelerated, are much
slower at small N .

2.2 Higher Dimensions

One of the main benefits of ddKS is its direct application to higher dimensions. Because the
Cherenkov and Background Included datsets included effects that were inherently 3-dimensional,
they were inappropriate to illustrate effects in any other number of dimensions. An abstract test set
for higher (and lower) dimensions was constructed. Both samples were filled with 50% background
from a uniform distribution of dimension d from -100 to 100. Then, a hypersphere of dimension d
was constructed, the radius 50 and 45 in each respective distribution. The results of evaluating ddKS
and KL divergence on this dataset are shown in Figure 5.

ddKS is able to reject the null hypothesis for every trial up to dimension 3 at α = 0.05, and is
sometimes able to reject the null hypothesis in dimension 4 ≤ d ≤ 8. Above dimension d ≥ 9, ddKS
is no longer able to reject the null hypothesis. In general, KL divergence is not as consistent as ddKS
in higher dimensions. KL divergence is able to reject the null hypothesis for α = 0.05 sometimes
in dimensions d ∈ [1, 3, 4, 5]. Using Scott’s rules for histogram construction lead to huge memory
requirements for PDF estimation in the KL divergence calculation. Above dimension d ≥ 5, KL
divergence requires ≥ 32GB of memory, including requesting 374PiB of memory for dimension
d = 10.
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3 Conclusions

In conclusion, we find ddKS to be a generally useful test statistic for high dimensional physical
science problems. It compares favorably against other possible test statistics, both in statistical and
computational efficiency. Particularly, it is more consistent, and doesn’t require the high effort of
constructing an appropriate estimate of the PDF that KL Divergence requires. ddKS is also a metric,
and those properties make it more desirable for use as a loss function in surrogate modeling problems.
In general data science applications, ddKS could place statistical significance on predictions from
other machine learning techniques with high dimensional latent spaces.

Broader Impact

We see applications of ddKS in a wide variety of fields. While our specific motivation - to validate
the correct behavior of a surrogate model in high energy physics - is a natural application, high
dimensional distribution distances are also important in generative modeling. As ddKS is closer
to basic statistics than many applied machine learning algorithms. We do not foresee any ethical
implications of its publication.
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