A Proposed High Dimensional Kolmogorov-Smirnov Distance Alex Hagen*, Jan Strube*, Isabel Haide†, James Kahn†, Shane Jackson*, Connor Hainje* - *Pacific Northwest National Laboratory; †Karlsruhe Institute of Technology Machine Learning and the Physical Sciences: Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS) - Vancouver, Canada - December 11, 2020 ## **Abstract** We present a high dimensional test statistic inspired directly by the Kolmogorov–Smirnov (KS) test statistic [1, 2] and Press' extension of the KS test to two dimensions [3]. We call this the ddKS statistic. To preclude the high computational cost associated with working in higher dimensions, we present an implementation using tensor primitives. This allows parallel computation on CPU or GPU. We explore the behavior of the test statistic in comparing two three-dimensional samples, and use a standard statistical method - the permutation method - to explore its significance. We show that, while the Kullback-Leibler divergence is a good choice for general distribution comparison, ddKS has properties that make it more desirable for surrogate model training and validation than the former. ## **Motivation** - Comparison of distributions, especially with strong statistical guarantees, is important throughout physical sciences and surrogate modeling - Statistical comparison in higher dimensions than 1 is often overlooked ### Test Statistics - Numerical summaries of data values to set thresholds for hypothesis testing - Use cases: - One-sample tests (data is compared to given probability distribution) - Two-sample tests (determine if two data sets are drawn from the same distribution) - Two-sample tests gain even more importance e.g through rise of generative models in machine learn- - As number of data samples increases, fast computation of statistical tests is invaluable for most analyses ## One Dimensional - Popular statistical tests (e.g. integrated mean squared error or Earth Mover's Distance) only used in onedimensional space - Scaling to higher dimensions often paired with high time cost - Most test statistics require assumptions/approxima- - The Kolmogorov-Smirnov test: - Also one-dimensional, but non-parametric - Defined as maximum difference between two cumulative distribution functions (CDF) $$D_{\rm n} = \sup_{x} |F_{1,\rm n}(x) - F_{2,\rm m}(x)| \tag{1}$$ ected (black) to divide the space into octants. The number of points from the two data sets (red, blue) in each octant at youtu.be/NcUta4lBJPU are counted and compared. Animation • KS one of the most general non-parametric tests, using both shape and position of CDFs High Dimensional CDF ## **Definition** - We take the case of the two sample test of N samples between predicted X_p and true X_t , each of dimension d - significance p is then compared to action level $\alpha=0.05$, and if $p\leq \alpha$, H_0 can be rejected. - tween two distributions - Use membership in orthants partitioned at each point in X_p and X_t as surrogate for full CDF - membership vector $$D_{p} = \max_{i,j} |V_{j}^{t}(x_{i}) - V_{j}^{p}(x_{i})|$$ (2) - Allows for the calculation of statistical significance using any distance or divergence measure - ullet Calculate test statistic D_p for predicted X_p and true X_t - Randomly mix X_p and X_t to produce two new distributions made of approximately half the samples from both, recalculating D_p for the two new distributions - Repeat M times to produce $D_{0,i}, i \in [1, M]$, with M large enough to approximate D_{n} under the Null hy- - p-value is the fraction of $D_{0,i}$ greater than D_p $$p = \frac{N_{D_p < D_{0,i}}}{N} \tag{3}$$ • To account for binomial statistics of $N_{D_n < D_{0,i}}$ use expectation value $$\langle p \rangle = \frac{1 + N_{D_p < D_{0,i}}}{2 + N} \tag{4}$$ - One-dimensional tests cannot identify covariances between variables - tions of underlying distribution • Calculating a CDF in • We use a method in- spired by Press [3], cal- culating the member- ship of the orthants high dimensions is am- - \bullet We seek to test the null hypothesis H_0 , that the two samples come from the same distribution. Statistical ## The ddKS Test Statistic - ddKS compares cumulative distribution function be- - ullet Region membership calculated in 2^d sized vector $x_i \in X_p$ and $V_i^p(x_i), V_i^t(x_i)$ is jth component of the - ddKS is then defined as $$D_{p} = \max_{i,j} |V_{j}^{t}(x_{i}) - V_{j}^{p}(x_{i})|$$ (2) ### Permutation Test Considered Test Statistics - Because of the permutation test, we can use any distance or divergence as a test statistic. To show ddKS's utility for physical sciences, we compare it to two other test statistics: - The one dimensional KS test: We calculate the KS test statistic on each dimension individually, summing those to create a pseudo-multi-dimensional test statistic. We indicate this as ks-1d on figures - We also calculate the diagonal distance of each point in each pairwise dimension using the l_2 norm, subsequently summing each dimension's KS test statistic as above. We indicate this as ks-diag on - The Kullback-Leibler (KL) Divergence: We calculate the KL divergence between an estimated probability density function of the two distributions. We use a histogram using Scott's [4] rule, sizing the number of bins by $\propto N^{ rac{a}{d+2}}$, to estimate probability density. We indicate this as kldiv-hist on figures - We also calculate a lower resolution probability density using only 3 bins in each dimension, subsequently calculating the KL Divergence as above. We indicate this as kldiv-hist25 on figures ## **Implementation** • Loop based implementation possible: loop through every point in one distribution, counting how many points fall in each surrounding orthant, this implementation was prohibitively slow to calculate during testing $(\mathcal{O}(N^2))$ for all N ## Tensor Primitive Based Computation - By using pytorch tensor primitives, implicit parallelism can be used for small N, reducing time complexity to $\mathcal{O}(1)$ and enabling GPU calculation - Trade time for memory complexity by constructing tensors ($\mathbb{P}, \mathbb{Q}, \mathbb{T}, \mathbb{U}$) from X_p and X_t where $\mathbb{P}[i,j,k] =$ $X_p[i,j]$ for all kBuild tensors of partition compar- - ison by performing elementwise operations, e.g. $\mathbb{G}_P = \mathbb{P} \geq \mathbb{Q},$ - not shown on figure 3) - ullet Each point is surrounded by 2^d or- ### ship tensor \mathbb{M} by using a positional encoding function $\mathbb{M}\left[i,j\right] = \sum_{l} \prod_{i=1}^{n} \left(\mathbb{G}\left[l,j,k\right] \cdot S\left[i,k\right] \right)$ $S\left(x,f\right) = (-1)^{\lfloor 4fx \rfloor}$ **Figure 2:** Positional Encoding function S for 3 di- thants. We construct a member- • Then, we fill the membership ten- ### Higher Dimensions Time Complexity • ddKS and KL Divergence are both $\mathcal{O}\left(N^2\right)$ at large N • A test set for higher dimensions was constructed. Both samples were filled with 50% background from a • pytorch's implicit parallelization makes all metrics uniform distribution from -100 to 100. Then, a hyper- $\overline{\mathcal{O}}(1)$ at small N (except loop based implementations sphere of dimension d was constructed, the radius 50 and 45 in each respective distribution. each distribution to the other • Finally, average to calculate the fi- $D_1 = \max |\mathbb{M}_1 - \mathbb{M}_2| \qquad (8)$ $D_2 = \max |\mathbb{M}_3 - \mathbb{M}_4| \qquad (9)$ - ddKS is able to reject the null hypothesis for every trial up to dimension 3 at $\alpha \le 0.05$ - ddKS is able to sometimes reject the null hypothesis in dimension $4 \le d \le 8$ - Above dimension $d \geq 9$, ddKS is no longer able to reject the null hypothesis - KL Divergence is able to reject the null hypothesis for $\alpha \leq 0.05$ sometimes in dimensions $d \in [1, 3, 4, 5]$ - Above dimension $d \geq 5$, KL Divergence requires \geq 32GB of memory, including requesting 374PiB of memory for dimension d = 10 Figure 4: Time complexity and significance with increasing dimensions for ddKS and KL Divergence using Scott's rules for constructing the histogram. Each permu- tation test was performed with 20 permutations, and each trial was performed 10 times. The green region indicates regions where H_0 could be rejected to $\alpha \leq 0.05$ ### is recorded for permutation tests using 100 permutations, therefore the number to evaluate the test statistic once is $\leq 100 \times$ that recorded on this chart. Estimated time complexities as $N \to \infty$ are printed to the right side of each line kldiv-hist25-cuda -- ks-diag-cuda Number of Points per Sample (n) Number of Points per Sample (n) Figure 3: Time to evaluate versus number of points for metrics considered. Time # Accelerated Computations ## Subsampling - High cost incurred by calculating membership vectors of regions centered at every - ullet Uniformly sampling less than Npoints from each distribution as centers reduces complexity - Faster by a constant factor if fixed proportion of N points are subsampled - $-\mathcal{O}(N)$ for constant number of subsampled points Tests show similar statistical eff - the Behavior section Expected to have lower statistical efficiency for distributions with differences only in the tails References Ital. Attuari, Giorn. 4 (1933), pp. 83-91. ciency to full ddKS, described in ## Voxel Based - Spatially decompose space into ddimensional voxels and fill with both sample sets - Divide space into orthants using each non-empty voxel as an origin Approximate D by finding the largest difference in orthant occu- - $\mathcal{O}(NV)$ or $\mathcal{O}(V^2)$ scaling for N data points and V voxels - ullet Tests show $\sim~\mathcal{O}\left(2^dN ight)$ and similar behavior to full ddKS, with decreased performance on "Background Included" data - Pairwise comparisons within close voxels should be implemented to improve performance on background included data ## Radius Based - ullet Select 2^d origins corresponding to the corners of the entire sample - For each origin, sort the data points according to distance from origin ($\mathcal{O}(2^dN\log N)$ operation) - ullet Approximate D by comparing sample membership to each origin between X_n and X_t for each test point ($\mathcal{O}(2^dN)$ operation) - ullet Tests show $\sim \mathcal{O}\left(2^dN ight)$ time complexity, and comparable behavior to full ddKS - Current implementation is loop based, as such is slower than ddKS until N > 10,000. Rewrite in C++ would increase speed. ## Data • Two pathological datasets were created: one to illustrate the problem with using one dimensional test statistics, the other to demonstrate an oft-encountered detection physics problem: comparison of signals in varied background ## Cherenkov Cone - A dataset mimicking data collected in Cherenkov cone detectors was constructed - A charged particle traveling at speed faster than light in quartz enters a quartz medium, and emits photons at φ from the track, uniformly distributed azimuthally around the track - An ideal detection plane collects the photons location and time of arrival - Compared with photons emitted isotropically from the top plane of the quartz medium, the single dimensional distributions of detection location and time look identical, however their full distribution is clearly not identical Figure 5: Dataset constructed mimicking photon emission during Cherenkov process. Histograms of detection position and time (silver and copper hatched regions) ## Background Included - A cone was generated as above, but time in a very large quartz medium - Volumetric radiological contamination of the quartz was simulated, and photons emitted isotropically, uniformly distributed within the quartz volume are also - Comparison between two different "cone"s is then difficult because of the multiple scales of the distribution. Two datasets including cones with $\varphi=15^\circ$ and $\varphi = 20^{\circ}$ were simulated. - Comparing the two distributions, the single dimensional distributions of detection location and time look very similar, however their full distribution is not Figure 6: Dataset constructed mimicking photon emission during Cherenkov process with a volumetric background. Histograms of detection position and time (silver and copper hatched regions) overlap closely. ## **Behavior** ## Cherenkov Cone - ddKS, and ddKS using subsampling all reject the nul hypothesis to $\alpha \le 0.05$ by 5 points per sample - ullet KL Divergence and KL Divergence (\sim 25 bin) reject the null hypothesis by 15-20 points per sample - One dimensional KS tests cannot reject the null hypothesis to $\alpha \le 0.05$ until > 20 points per sample Figure 7: P-Value versus number of points for KL, 1d KS, ddKS tests on the comparison between a Cherenkov cone and a volume source. Each permutation test was performed using 100 permutations, and trials were repeated 25 times. # Background Included by ~ 100 points per sample • KL Divergence rejects the null hypothesis to $\alpha \leq 0.05$ • ddKS is able to reject the null hypothesis to $\alpha \le 0.05$ - by ~ 125 points per sample • ddKS using subsampling is able to reject the null hypothesis to $\alpha \leq 0.05$ by between 125 and 1000 points - \bullet KL Divergence (\sim 25 bin) is never able to reject the null hypothesis to $\alpha \leq 0.05$ Figure 8: P-Value versus number of points for KL, 1d KS, ddKS tests on the comparison between two Cherenkov cones with heta of $15^{ m deg}$ and $20^{ m deg}$ in a wide background of volumetric photon emissions. Each permutation test was performed using 100 permutations, and trials were repeated 25 times. ## Conclusions • In general, we find ddKS to be a useful test statistic for high dimensional data, out-performing one dimensional metrics and KL divergence on the scientific data sets we explored ## Applications - ddKS is a metric, which suggests its use as a loss function for high dimensional data - in particular in scientific applications - Surrogate modeling (replacing computational expensive simulators of scientific data with ML applications) is growing in popularity. ddKS is useful as uncertainty quantification or loss function for these surrogate models. - ddKS could place statistical significance on predictions from other ML applications with high dimensional latent spaces # Future Work - Investigation of theoretical ways to determine significance would reduce computational cost by avoiding the permutation test - Further development of accelerated methods (including acceleration of dimension related time complexity) will make ddKS more usable 12/11/20 | PNNL-SA-158210 • High dimensional CDF approximations in other measures (such as Earth Mover's Distance) could be used as a loss function for generative modeling ## U.S. DEPARTMENT OF BATTELLE PNNL is operated by Battelle for the U.S. Department of Energy - Alexander Hagen (509) 375-2403 | alexander.hagen@pnnl.gov - [2] N. Smirnov. "Table for Estimating the Goodness of Fit of Empirical Distributions". In: Ann. [4] David W. Scott and Stephan R. Sain. "Multi-dimensional Density Estimation". In: Hand-Math. Statist. 19.2 (June 1948), pp. 279–281. DOI: 10.1214/aoms/1177730256. URL: book of Statistics vol 23 Data Mining and Computational Statistics August 2004 (2004), - [1] Andrey Kolmogorov. "Sulla determinazione empirica di una Igge di distribuzione". In: Inst. [3] William H Press and Saul A Teukolsky. "Kolmogorov-Smirnov Test for Two-Dimensional Data". In: Citation: Computers in Physics 2 (1988), p. 74. DOI: 10.1063/1.4822753. URL: ## **Acknowledgements** This work was supported by the U.S. Department of Energy under contract DE-AC06-76RLO1830 at PNNL with collaboration from the Karlsruhe Institute of Technology (KIT). The motivation and datasets investigated were inspired by the needs of the Belle II experiment. Karlsruhe Institute of Technolog