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Abstract

Since the first detection of gravitational waves five years ago, the LIGO and Virgo
observatories have detected dozens of signals from merging compact binaries. Each
of these is analyzed using Bayesian inference and a standard sampling algorithm to
extract the parameters of the system, assuming a signal model and stationary Gaus-
sian noise. In this work, we describe the application of likelihood-free inference
with normalizing flows to perform fast-and-accurate inference on gravitational-
wave events. We train a neural-spline flow to model the gravitational-wave posterior
over the full 15-dimensional space of system parameters for quasicircular binary
black holes, given detector strain data. Training data for this consists of 106 simu-
lated waveforms, with noise realizations and extrinsic parameters chosen at train
time, effectively providing an infinitely large training dataset. Once the model is
trained, we perform inference on data from the first detection, GW150914, and
show that we recover results consistent with standard sampling algorithms. We
thereby establish deep learning as a tool to confront the growing challenges of
gravitational-wave inference.

1 Introduction

The first direct detection of gravitational waves was made in September 2015, when LIGO observed
a signal from the merger of two black holes 1.4 billion light-years away [1]. Determination of the
parameters of the binary that gave rise to the observed strain data was made possible by having
accurate models for the signal and using Bayesian inference techniques. Denoting the parameters
of the binary (component masses, spins, sky position, etc.) by θ and the measured strain data by s,
the aim of this inference is to sample from the posterior distribution, θ ∼ p(θ|s). The posterior is
calculated using Bayes’ theorem,

p(θ|s) = p(s|θ)p(θ)
p(s)

, (1)

where p(s|θ) is the likelihood, p(θ) is the prior over parameters, and p(s) is a normalizing factor called
the evidence. The likelihood is given by the probability distribution of the residual n ≡ s−h(θ), once
the predicted signal waveform h(θ) associated to θ is subtracted from s. This residual is assumed
to be stationary Gaussian noise with a power spectral density (PSD) estimated for the detectors
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at the time of the event. With a prior specified, the right hand side of (1) can be evaluated up to
normalization, and an algorithm such as Markov Chain Monte Carlo or nested sampling [2, 3] is used
to obtain samples from the posterior.

Predictions h(θ) for gravitational-wave signals come from solving the Einstein field equation of
general relativity (plus any equations for matter fields in the case of merging neutron stars). The
Einstein equation is a nonlinear partial differential equation for the spacetime metric, and solving
it numerically for a binary black hole merger can take weeks. Faster models using perturbation
theory and fits to numerical relativity have therefore been developed for use in data analysis (see, e.g.,
[4, 5]). A standard sampling algorithm, however, requires many millions of likelihood (and waveform)
evaluations, so even with fast models, inference for a binary black hole system can take days, and this
extends to weeks for binary neutron stars. Especially for binary neutron stars, more rapid inference
would be desirable for providing rapid alerts to electromagnetic observers for followup observations.

Since the first detection, the LIGO-Virgo Collaboration has published analyses of 50 binary merg-
ers [6], and they have announced over 20 additional triggers in the second half of the most recent
observing run [7], the details of which remain to be published. As the rate of detections grows with
increasing detector sensitivity, performing parameter inference on each of these is becoming an
increasingly costly task. Costs will only increase further with the the use of newer more accurate
waveform models that incorporate more physics [8], which will be needed to reduce systematic errors
with sensitive detectors.

There is therefore an urgent need for faster inference methods for gravitational waves. Our aim
in this work is to demonstrate that a neural-network conditional density estimator q(θ|s) can be
used to perform fast-and-accurate inference for binary black holes in a realistic setting. We use
likelihood-free training to learn an approximation to the true posterior, q(θ|s) ≈ p(θ|s), for any strain
data s consistent with the chosen prior, waveform model, and detector noise PSD. Critically, this
requires samples from the prior θ ∼ p(θ) and simulated strain data s ∼ p(s|θ), but no samples from
the posterior. Once trained q(θ|s) can be rapidly sampled, so the ultimate goal is to amortize training
time over many events.

There have been several past efforts along similar lines [9–11], but these have all either used a
restricted parameter space, or used restricted approximations for the posterior distribution, or only
analyzed simulated data. In this work, which is a workshop version of [12], we use a powerful
normalizing flow [13] to produce a sufficiently flexible q(θ|s) to overcome all of these restrictions: we
infer all 15 parameters for binary black holes, with data from multiple detectors, and we demonstrate
the approach on real interferometer data from the first detection, GW150914. We show that our
results are comparable to those produced using standard samplers.

2 Method

Our aim is to train a neural-network conditional density estimator q(θ|s) to approximate the
gravitational-wave posterior p(θ|s). To achieve this, q(θ|s) must have sufficient flexibility to capture
the nontrivial distribution over θ, as well as the complicated dependence on s. We use the method of
normalizing flows [14, 15].

2.1 Normalizing flows

A normalizing flow fs : u 7→ θ is an invertible mapping with simple Jacobian determinant. Given a
“base” distribution π(u), the normalizing flow defines a conditional probability distribution via the
change of variables rule,

q(θ|s) ≡ π(f−1
s (θ))

∣∣∣det J−1
fs

∣∣∣ . (2)

The idea is to choose π(u) such that it can be easily sampled and its density evaluated; then q(θ|s)
inherits these nice properties. We will adopt the standard choice of taking π(u) to be multivariate
standard normal (of the same dimension D as of the parameter space θ).

To achieve sufficient flexibility, we use a neural-spline normalizing flow [13]. We used the implemen-
tation in the nflows package [16], and took the specific flow to be a composition of rational-quadratic
coupling transforms cs, following the examples in section 5.1 of [13]. Each cs holds fixed half of the
parameters (u1:d), and transforms the remaining ones (ud+1:D) elementwise according to a coupling

2



Table 1: Parameters characterizing quasicircular black hole binaries

Parameter Description Prior Extrinsic

(m1,m2) component masses [10 M�, 80 M�], m1 ≥ m2 No
φc reference phase [0, 2π] No
tc,geocent time of coalescence [−0.1 s, 0.1 s] Yes
dL luminosity distance [100 Mpc, 1000 Mpc] Yes
(a1, a2) dimensionless spin magnitudes [0, 0.88] No
(θ1, θ2, φ12, φJL) spin angles standard [18] No
θJN inclination relative to line-of-sight [0, π], uniform in sine No
ψ polarization angle [0, π] Yes
(α, δ) sky position uniform over sky Yes

law,

cs,i(u) =

{
ui if i ≤ d,
ci(ui;u1:d, s) if i > d.

(3)

The ci(ui;u1:d, s) are rational-quadratic splines, which are analytically differentiable and invertible
with respect to ui; hence they give rise to a normalizing flow. The composition of coupling transforms,
with permutations of the components of u in between, gives rise to a powerful flow. Parameters
defining the splines are output from residual neural networks [17], which take as input u1:d and s.

2.2 Training

We train the network to minimize the expected value (over s) of the cross-entropy between the true
and model distributions,

L = −
∫

dsdθ p(θ, s) log q(θ|s). (4)

We evaluate this integral using a Monte Carlo approximation, drawing samples (θ(i), s(i)) ∼ p(θ, s)
ancestrally, i.e., θ(i) ∼ p(θ), then s(i) ∼ p(s|θ(i)), then

L ≈ − 1

N

N∑
i=1

log q(θ(i)|s(i)), (5)

where N is the number of samples in the minibatch. This training approach, called likelihood-
free or simulation-based inference, requires no samples from the posterior p(θ|s), which would be
computationally prohibitive. Instead, it merely requires the ability to generate artificial strain data.

2.2.1 Prior

We perform inference over the full 15-dimensional space of binary black hole parameters. These are
listed in table 1, along with their prior ranges. (Priors are uniform unless otherwise indicated.) Priors
have been chosen to be uninformative and to cover a large region of parameter space that includes
GW150914.

2.2.2 Strain data

Given parameters θ(i), we use the IMRPhenomPv2 frequency-domain waveform model for precessing
quasicircular binaries [19, 4, 20] to generate an associated signal h(i). We then add a noise realization
n(i) ∼ pSn(n), drawn from a stationary Gaussian distribution with a PSD estimated in the two
LIGO detectors in the 1024 s before the event. This is a reasonable approximation to the detector
noise, although in the future it would be interesting to study deviations from the stationary Gaussian
idealization. Strain data sets s are initially 8 s long and cover a frequency range between 20 Hz
and 1024 Hz, but we use a singular value decomposition to compress these to a 100-component
reduced-order representation in each detector. These are then whitened and standardized before being
fed into the network.

We use a training set of 106 elements, which we split into 90% training and 10% test data. However,
since it is very fast to generate noise realizations, we do this at train time, effectively enlarging the
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Figure 1: Marginalized one- and two- dimensional posterior distributions over a subset of parameters,
comparing the normalizing flow (orange) and bilby dynesty (blue). Contours represent 50% and
90% credible regions. The inset shows the sky position. See [12] for a posterior that includes several
additional parameters.

size of the training set. In addition, some of the parameters (those labeled “extrinsic” in table 1) are
chosen at train time, since they induce simple transformations of the waveforms.

3 Results

We trained for 500 epochs with a batch size of 512. We found that performance was best with 15
coupling transforms, with spline functions given by 9 knots (see [13]). Each neural network was made
up of 10 fully-connected residual blocks of 2 layers each, with 512 hidden units. These large residual
networks were needed to extract sufficient information from the strain data. With this configuration,
training on an NVIDIA Quadro P4000 GPU took approximately 6 days.

After training the network, we used it to perform inference on the actual strain data for GW150914.
To do this, we took an 8 s stretch of detector data that included the signal, expressed it in the reduced-
order representation, and passed this as context to the flow. The model then produced posterior
samples at a rate of 5,000 per second. As a benchmark, we analyzed the same data using the dynesty
sampler [21] in the bilby Bayesian inference library for gravitational-wave data analysis [22, 3].
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In figure 1 we present our main result, comparing the two samplers. For the most part, the two
posteriors are in very close agreement, with the neural network having larger secondary modes in the
sky position and the inclination.

In addition to analyzing GW150914, we performed a series of injection tests with artificial data
to ensure good performance throughout parameter space. For each one-dimensional marginalized
posterior, we compared the percentile values of the true parameters against a uniform distribution
using a Kolmogorov-Smirnov test, and showed they were appropriately distributed (see [12]).

4 Conclusions

In this work, we demonstrated for the first time that deep learning can be used to infer all 15 binary
black hole parameters from real gravitational-wave strain data, including accurate estimates of
uncertainties. Rapid parameter estimation is critical for multimessenger followup and for confronting
the growing number of gravitational-wave detections.

Once trained, our neural conditional density estimator enables inference in seconds. There have been
several other applications of deep-learning likelihood-free inference methods to gravitational waves,
including the use of gaussian-mixture and histogram models [10], and a conditional variational au-
toencoder [9]. Although these methods enable similarly fast inference, they either have limited ability
to represent complicated posterior distributions, or they are limited to low numbers of dimensions, or
they minimize an upper bound on the cross-entropy loss (in the case of the variational autoencoder).
The work presented here using a powerful normalizing flow is so-far the only demonstration of
accurate inference of all 15 parameters from real data.

The neural density estimators we described are at present tuned to the detector noise characteristics at
the time of the event. Although the detectors are mostly stable during an observing run, the noise
PSDs do vary slightly from event to event. To fully amortize training costs over every event it will
therefore be necessary to also condition the model on this information; alternatively, the network
could learn the noise properties directly from the data. The former approach is closest to current
analysis methods, and work is underway to incorporate this.

Broader Impact

Since we are analyzing data from gravitational-wave observatories, there are no ethical implications
of our work. One of the main long-term aims of our work is to develop deep-learning tools as
viable alternatives to standard data analysis methods for gravitational-wave data analysis. These
standard approaches are very computationally costly and use a significant amount of electricity. If the
approaches we are developing become widespread and reduce electricity usage, then this would have
a positive impact on the Earth’s climate.
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